Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li
{"title":"模糊双曲切线模型路径跟踪的h -∞控制","authors":"Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li","doi":"10.1155/2016/9072831","DOIUrl":null,"url":null,"abstract":"To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A H-Infinity Control for Path Tracking with Fuzzy Hyperbolic Tangent Model\",\"authors\":\"Guangsi Shi, Jue Yang, Xuan Zhao, Yanfeng Li, Ya-Li Zhao, Jian Li\",\"doi\":\"10.1155/2016/9072831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/9072831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/9072831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A H-Infinity Control for Path Tracking with Fuzzy Hyperbolic Tangent Model
To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.
期刊介绍:
Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.