{"title":"大规模网络分析算法和网络工具包","authors":"Eugenio Angriman, Alexander van der Grinten, M. Hamann, Henning Meyerhenke, M. Penschuck","doi":"10.48550/arXiv.2209.13355","DOIUrl":null,"url":null,"abstract":"The abundance of massive network data in a plethora of applications makes scalable analysis algorithms and software tools necessary to generate knowledge from such data in reasonable time. Addressing scalability as well as other requirements such as good usability and a rich feature set, the open-source software NetworKit has established itself as a popular tool for large-scale network analysis. This chapter provides a brief overview of the contributions to NetworKit made by the DFG Priority Programme SPP 1736 Algorithms for Big Data. Algorithmic contributions in the areas of centrality computations, community detection, and sparsification are in the focus, but we also mention several other aspects -- such as current software engineering principles of the project and ways to visualize network data within a NetworKit-based workflow.","PeriodicalId":91988,"journal":{"name":"\"Medical Computer Vision: Algorithms for Big Data\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)","volume":"66 1","pages":"3-20"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithms for Large-scale Network Analysis and the NetworKit Toolkit\",\"authors\":\"Eugenio Angriman, Alexander van der Grinten, M. Hamann, Henning Meyerhenke, M. Penschuck\",\"doi\":\"10.48550/arXiv.2209.13355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of massive network data in a plethora of applications makes scalable analysis algorithms and software tools necessary to generate knowledge from such data in reasonable time. Addressing scalability as well as other requirements such as good usability and a rich feature set, the open-source software NetworKit has established itself as a popular tool for large-scale network analysis. This chapter provides a brief overview of the contributions to NetworKit made by the DFG Priority Programme SPP 1736 Algorithms for Big Data. Algorithmic contributions in the areas of centrality computations, community detection, and sparsification are in the focus, but we also mention several other aspects -- such as current software engineering principles of the project and ways to visualize network data within a NetworKit-based workflow.\",\"PeriodicalId\":91988,\"journal\":{\"name\":\"\\\"Medical Computer Vision: Algorithms for Big Data\\\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)\",\"volume\":\"66 1\",\"pages\":\"3-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\\\"Medical Computer Vision: Algorithms for Big Data\\\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.13355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"\"Medical Computer Vision: Algorithms for Big Data\" : International Workshop, MCV 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015 : revised selected papers. MCV (Workshop) (5th : 2015 : Munich, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.13355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大量应用程序中的大量网络数据使得可扩展的分析算法和软件工具在合理的时间内从这些数据中生成知识是必要的。开源软件NetworKit在解决可伸缩性以及其他需求(如良好的可用性和丰富的特性集)的同时,已成为大规模网络分析的流行工具。本章简要概述了DFG优先级计划SPP 1736大数据算法对NetworKit的贡献。算法在中心计算、社区检测和稀疏化领域的贡献是重点,但我们也提到了其他几个方面——比如项目的当前软件工程原则和在基于network的工作流中可视化网络数据的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for Large-scale Network Analysis and the NetworKit Toolkit
The abundance of massive network data in a plethora of applications makes scalable analysis algorithms and software tools necessary to generate knowledge from such data in reasonable time. Addressing scalability as well as other requirements such as good usability and a rich feature set, the open-source software NetworKit has established itself as a popular tool for large-scale network analysis. This chapter provides a brief overview of the contributions to NetworKit made by the DFG Priority Programme SPP 1736 Algorithms for Big Data. Algorithmic contributions in the areas of centrality computations, community detection, and sparsification are in the focus, but we also mention several other aspects -- such as current software engineering principles of the project and ways to visualize network data within a NetworKit-based workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithms for Large-scale Network Analysis and the NetworKit Toolkit Energy-Efficient Scheduling The GENO Software Stack Skeleton-Based Clustering by Quasi-Threshold Editing Graph-Based Methods for Rational Drug Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1