无人机热成像:一种评估小麦基因型田间作物水分胁迫和产量变化的可靠技术

Sumanta Das, J. Christopher, A. Apan, Malini Roy Choudhury, S. Chapman, N. Menzies, Y. Dang
{"title":"无人机热成像:一种评估小麦基因型田间作物水分胁迫和产量变化的可靠技术","authors":"Sumanta Das, J. Christopher, A. Apan, Malini Roy Choudhury, S. Chapman, N. Menzies, Y. Dang","doi":"10.1109/InGARSS48198.2020.9358955","DOIUrl":null,"url":null,"abstract":"In recent years, unmanned aerial vehicle (UAV) - based thermal imaging techniques have become increasingly popular in precision agriculture, especially in monitoring crop biotic and abiotic stresses, and soil water, irrigation scheduling, and residue mapping. However, studies are limited on thermal imaging techniques in yield estimation and in-field variability assessment. Here we evaluate the potential of UAV thermal imaging techniques to assess crop water stress and predict grain yield of 18 contrasting wheat genotypes. We conducted an airborne campaign close to crop flowering to capture thermal imagery for a rain fed wheat experimental field in southern Queensland, Australia. Plot wise canopy temperatures (°C) (Tcanopy) were extracted from thermal imagery to determine crop water stress index (CWSI). Wheat grain yield was significantly correlated with CWSI (R2= 0.63; RMSE= 0.34 t/ha). The results suggest potential for UAV thermal imaging techniques to measure crop water status and predict yield under water-limited environments.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"150 6 1","pages":"138-141"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"UAV-Thermal Imaging: A Robust Technology to Evaluate in-field Crop Water Stress and Yield Variation of Wheat Genotypes\",\"authors\":\"Sumanta Das, J. Christopher, A. Apan, Malini Roy Choudhury, S. Chapman, N. Menzies, Y. Dang\",\"doi\":\"10.1109/InGARSS48198.2020.9358955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, unmanned aerial vehicle (UAV) - based thermal imaging techniques have become increasingly popular in precision agriculture, especially in monitoring crop biotic and abiotic stresses, and soil water, irrigation scheduling, and residue mapping. However, studies are limited on thermal imaging techniques in yield estimation and in-field variability assessment. Here we evaluate the potential of UAV thermal imaging techniques to assess crop water stress and predict grain yield of 18 contrasting wheat genotypes. We conducted an airborne campaign close to crop flowering to capture thermal imagery for a rain fed wheat experimental field in southern Queensland, Australia. Plot wise canopy temperatures (°C) (Tcanopy) were extracted from thermal imagery to determine crop water stress index (CWSI). Wheat grain yield was significantly correlated with CWSI (R2= 0.63; RMSE= 0.34 t/ha). The results suggest potential for UAV thermal imaging techniques to measure crop water status and predict yield under water-limited environments.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"150 6 1\",\"pages\":\"138-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,基于无人机(UAV)的热成像技术在精准农业中越来越受欢迎,特别是在作物生物和非生物胁迫监测、土壤水分、灌溉调度和残留物测绘等方面。然而,热成像技术在产量估算和田间变异性评估方面的研究有限。在此,我们评估了无人机热成像技术在评估作物水分胁迫和预测18种不同小麦基因型籽粒产量方面的潜力。我们在澳大利亚昆士兰州南部的一个雨养小麦试验田进行了一次接近作物开花的空降活动,以捕捉热图像。从热图像中提取逐图冠层温度(°C) (Tcanopy)来确定作物水分胁迫指数(CWSI)。小麦籽粒产量与CWSI显著相关(R2= 0.63;RMSE= 0.34 t/ha)。研究结果表明,在缺水环境下,无人机热成像技术在测量作物水分状况和预测产量方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV-Thermal Imaging: A Robust Technology to Evaluate in-field Crop Water Stress and Yield Variation of Wheat Genotypes
In recent years, unmanned aerial vehicle (UAV) - based thermal imaging techniques have become increasingly popular in precision agriculture, especially in monitoring crop biotic and abiotic stresses, and soil water, irrigation scheduling, and residue mapping. However, studies are limited on thermal imaging techniques in yield estimation and in-field variability assessment. Here we evaluate the potential of UAV thermal imaging techniques to assess crop water stress and predict grain yield of 18 contrasting wheat genotypes. We conducted an airborne campaign close to crop flowering to capture thermal imagery for a rain fed wheat experimental field in southern Queensland, Australia. Plot wise canopy temperatures (°C) (Tcanopy) were extracted from thermal imagery to determine crop water stress index (CWSI). Wheat grain yield was significantly correlated with CWSI (R2= 0.63; RMSE= 0.34 t/ha). The results suggest potential for UAV thermal imaging techniques to measure crop water status and predict yield under water-limited environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1