{"title":"基于鱼雷爆炸损伤评估的目标设计方法","authors":"Wensi Liu, Hengdou Tian, SuQiu Cheng","doi":"10.1360/sspma-2020-0361","DOIUrl":null,"url":null,"abstract":"There is no standard specification for targeted design based on the torpedo explosion damage assessment. Existing methods are currently based on ship damage assessments. We analyze the basis for the classification of damage levels of surface ships, which clarified that the design of the damage assessment target should refer to the damage and failure conditions of the ship structure such as different breaks and plastic deformation, and point out the problems around drawing on the current ship damage rating standards in the process of assessing target design. In this work, these issues are resolved through simulation, and the results show that there is complex coupling between underwater explosion loads and typical surface ships. Torpedo explosion damage efficiency is not only related to the physical work of the explosive load on the hull but also to the mode of action of the load and the energy output structure. The damage mode and energy output structure are quite different under different working conditions. The design of the underwater explosion target structure should be carried out based on the damage mode and energy output structure under the corresponding working conditions predicted by the calculation results. According to the characteristics of torpedo explosion damage, an optimized design method for the underwater explosion target structure is proposed. The equivalence of target design damage is verified through simulation. The simulation comparison shows that the design of the target, based on this method, can effectively evaluate the damage of the actual ship by the torpedo. The design process for the torpedo explosion damage target under actual combat conditions is given to provide technical support to the torpedo explosion damage evaluation target design. This method can also provide simulation prediction for torpedo explosion damage test assessments.","PeriodicalId":44892,"journal":{"name":"Scientia Sinica-Physica Mechanica & Astronomica","volume":"81 4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted design method based on torpedo explosiondamage assessment\",\"authors\":\"Wensi Liu, Hengdou Tian, SuQiu Cheng\",\"doi\":\"10.1360/sspma-2020-0361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is no standard specification for targeted design based on the torpedo explosion damage assessment. Existing methods are currently based on ship damage assessments. We analyze the basis for the classification of damage levels of surface ships, which clarified that the design of the damage assessment target should refer to the damage and failure conditions of the ship structure such as different breaks and plastic deformation, and point out the problems around drawing on the current ship damage rating standards in the process of assessing target design. In this work, these issues are resolved through simulation, and the results show that there is complex coupling between underwater explosion loads and typical surface ships. Torpedo explosion damage efficiency is not only related to the physical work of the explosive load on the hull but also to the mode of action of the load and the energy output structure. The damage mode and energy output structure are quite different under different working conditions. The design of the underwater explosion target structure should be carried out based on the damage mode and energy output structure under the corresponding working conditions predicted by the calculation results. According to the characteristics of torpedo explosion damage, an optimized design method for the underwater explosion target structure is proposed. The equivalence of target design damage is verified through simulation. The simulation comparison shows that the design of the target, based on this method, can effectively evaluate the damage of the actual ship by the torpedo. The design process for the torpedo explosion damage target under actual combat conditions is given to provide technical support to the torpedo explosion damage evaluation target design. This method can also provide simulation prediction for torpedo explosion damage test assessments.\",\"PeriodicalId\":44892,\"journal\":{\"name\":\"Scientia Sinica-Physica Mechanica & Astronomica\",\"volume\":\"81 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Sinica-Physica Mechanica & Astronomica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1360/sspma-2020-0361\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Sinica-Physica Mechanica & Astronomica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1360/sspma-2020-0361","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Targeted design method based on torpedo explosiondamage assessment
There is no standard specification for targeted design based on the torpedo explosion damage assessment. Existing methods are currently based on ship damage assessments. We analyze the basis for the classification of damage levels of surface ships, which clarified that the design of the damage assessment target should refer to the damage and failure conditions of the ship structure such as different breaks and plastic deformation, and point out the problems around drawing on the current ship damage rating standards in the process of assessing target design. In this work, these issues are resolved through simulation, and the results show that there is complex coupling between underwater explosion loads and typical surface ships. Torpedo explosion damage efficiency is not only related to the physical work of the explosive load on the hull but also to the mode of action of the load and the energy output structure. The damage mode and energy output structure are quite different under different working conditions. The design of the underwater explosion target structure should be carried out based on the damage mode and energy output structure under the corresponding working conditions predicted by the calculation results. According to the characteristics of torpedo explosion damage, an optimized design method for the underwater explosion target structure is proposed. The equivalence of target design damage is verified through simulation. The simulation comparison shows that the design of the target, based on this method, can effectively evaluate the damage of the actual ship by the torpedo. The design process for the torpedo explosion damage target under actual combat conditions is given to provide technical support to the torpedo explosion damage evaluation target design. This method can also provide simulation prediction for torpedo explosion damage test assessments.