大数据时代的有效决策支持:通过BI&A优化组织绩效

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2022-01-01 DOI:10.4018/ijdsst.286683
Fen Wang, M. Raisinghani, Manuel Mora Tavarez, J. Forrest
{"title":"大数据时代的有效决策支持:通过BI&A优化组织绩效","authors":"Fen Wang, M. Raisinghani, Manuel Mora Tavarez, J. Forrest","doi":"10.4018/ijdsst.286683","DOIUrl":null,"url":null,"abstract":"This study conducts a review and synthesis of the Business Intelligence and Analytics (BI&A) evolution, applications, frameworks and emerging trends with the aim to provide a summary of core concepts, a succinct but valuable description of main applications and frameworks, and an account of main recommendations for addressing the Big Data challenges and opportunities. It develops an integrated and organized view on the BI&A evolution process and presents an integrated BI&A application framework to help organizations adopt or develop the appropriate BI&A solutions to derive the desired impact in the Big Data era. This paper also elicits a set of practical recommendations to executives and leaders in organizations worldwide for interpreting the BI&A literature and applying the rich body of knowledge for IT practitioners. It traces the BI&A evolution to data-driven discovery and highly proactive and creative decision-making utilizing advanced analytical techniques with unstructured and massive data sources to cope with a highly dynamic global business environment in the Big Data era.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"1 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective Decision Support in the Big Data Era: Optimize Organizational Performance via BI&A\",\"authors\":\"Fen Wang, M. Raisinghani, Manuel Mora Tavarez, J. Forrest\",\"doi\":\"10.4018/ijdsst.286683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study conducts a review and synthesis of the Business Intelligence and Analytics (BI&A) evolution, applications, frameworks and emerging trends with the aim to provide a summary of core concepts, a succinct but valuable description of main applications and frameworks, and an account of main recommendations for addressing the Big Data challenges and opportunities. It develops an integrated and organized view on the BI&A evolution process and presents an integrated BI&A application framework to help organizations adopt or develop the appropriate BI&A solutions to derive the desired impact in the Big Data era. This paper also elicits a set of practical recommendations to executives and leaders in organizations worldwide for interpreting the BI&A literature and applying the rich body of knowledge for IT practitioners. It traces the BI&A evolution to data-driven discovery and highly proactive and creative decision-making utilizing advanced analytical techniques with unstructured and massive data sources to cope with a highly dynamic global business environment in the Big Data era.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":\"1 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.286683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.286683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本研究对商业智能和分析(BI&A)的发展、应用、框架和新兴趋势进行了回顾和综合,旨在总结核心概念,对主要应用和框架进行简洁但有价值的描述,并提出应对大数据挑战和机遇的主要建议。它开发了一个集成的、有组织的BI&A演变过程视图,并提出了一个集成的BI&A应用框架,以帮助组织采用或开发适当的BI&A解决方案,以在大数据时代获得预期的影响。本文还引出了一组实用的建议,以供全球组织的执行人员和领导者解释BI&A文献,并为IT从业者应用丰富的知识体系。它将BI&A的演变追溯到数据驱动的发现和高度主动和创造性的决策,利用先进的分析技术与非结构化和海量数据源来应对大数据时代高度动态的全球商业环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Decision Support in the Big Data Era: Optimize Organizational Performance via BI&A
This study conducts a review and synthesis of the Business Intelligence and Analytics (BI&A) evolution, applications, frameworks and emerging trends with the aim to provide a summary of core concepts, a succinct but valuable description of main applications and frameworks, and an account of main recommendations for addressing the Big Data challenges and opportunities. It develops an integrated and organized view on the BI&A evolution process and presents an integrated BI&A application framework to help organizations adopt or develop the appropriate BI&A solutions to derive the desired impact in the Big Data era. This paper also elicits a set of practical recommendations to executives and leaders in organizations worldwide for interpreting the BI&A literature and applying the rich body of knowledge for IT practitioners. It traces the BI&A evolution to data-driven discovery and highly proactive and creative decision-making utilizing advanced analytical techniques with unstructured and massive data sources to cope with a highly dynamic global business environment in the Big Data era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1