{"title":"从未标记区域提取适应性上下文线索","authors":"Congcong Li, Devi Parikh, Tsuhan Chen","doi":"10.1109/ICCV.2011.6126282","DOIUrl":null,"url":null,"abstract":"Existing approaches to contextual reasoning for enhanced object detection typically utilize other labeled categories in the images to provide contextual information. As a consequence, they inadvertently commit to the granularity of information implicit in the labels. Moreover, large portions of the images may not belong to any of the manually-chosen categories, and these unlabeled regions are typically neglected. In this paper, we overcome both these drawbacks and propose a contextual cue that exploits unlabeled regions in images. Our approach adaptively determines the granularity (scene, inter-object, intra-object, etc.) at which contextual information is captured. In order to extract the proposed contextual cue, we consider a scene to be a structured configuration of objects and regions; just as an object is a composition of parts. We thus learn our proposed “contextual meta-objects” using any off-the-shelf object detector, which makes our proposed cue widely accessible to the community. Our results show that incorporating our proposed cue provides a relative improvement of 12% over a state-of-the-art object detector on the challenging PASCAL dataset.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Extracting adaptive contextual cues from unlabeled regions\",\"authors\":\"Congcong Li, Devi Parikh, Tsuhan Chen\",\"doi\":\"10.1109/ICCV.2011.6126282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing approaches to contextual reasoning for enhanced object detection typically utilize other labeled categories in the images to provide contextual information. As a consequence, they inadvertently commit to the granularity of information implicit in the labels. Moreover, large portions of the images may not belong to any of the manually-chosen categories, and these unlabeled regions are typically neglected. In this paper, we overcome both these drawbacks and propose a contextual cue that exploits unlabeled regions in images. Our approach adaptively determines the granularity (scene, inter-object, intra-object, etc.) at which contextual information is captured. In order to extract the proposed contextual cue, we consider a scene to be a structured configuration of objects and regions; just as an object is a composition of parts. We thus learn our proposed “contextual meta-objects” using any off-the-shelf object detector, which makes our proposed cue widely accessible to the community. Our results show that incorporating our proposed cue provides a relative improvement of 12% over a state-of-the-art object detector on the challenging PASCAL dataset.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting adaptive contextual cues from unlabeled regions
Existing approaches to contextual reasoning for enhanced object detection typically utilize other labeled categories in the images to provide contextual information. As a consequence, they inadvertently commit to the granularity of information implicit in the labels. Moreover, large portions of the images may not belong to any of the manually-chosen categories, and these unlabeled regions are typically neglected. In this paper, we overcome both these drawbacks and propose a contextual cue that exploits unlabeled regions in images. Our approach adaptively determines the granularity (scene, inter-object, intra-object, etc.) at which contextual information is captured. In order to extract the proposed contextual cue, we consider a scene to be a structured configuration of objects and regions; just as an object is a composition of parts. We thus learn our proposed “contextual meta-objects” using any off-the-shelf object detector, which makes our proposed cue widely accessible to the community. Our results show that incorporating our proposed cue provides a relative improvement of 12% over a state-of-the-art object detector on the challenging PASCAL dataset.