时间序列平滑改进预测

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2021-05-01 DOI:10.2478/acss-2021-0008
V. Romanuke
{"title":"时间序列平滑改进预测","authors":"V. Romanuke","doi":"10.2478/acss-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract Both statistical and neural network methods may fail in forecasting time series even operating on a great amount of data. It is an open question of which amount fits best to make sufficiently accurate forecasts on it. This implies that the length or time series might be optimised. Hence, the objective is to improve the quality of forecasting by an assumption that parameters are set nearly at their optimal values. To achieve objective, the two types of the benchmark time series are considered: sine-shaped series and random-like series with repeatability. Trend, seasonality, and decay properties embedded into each type. Based on the benchmark of 24 time series models, it is ascertained that, for improving the forecasting, the time series should be smoothed and then downsampled. These operations can be fulfilled successively until the improvement fails. If preliminary smoothing worsens forecasts, the raw time series is straightforwardly downsampled until the forecasting accuracy starts dropping. However, if time series has a visible property of being noised, the preliminary smoothing is strongly recommended.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"17 1","pages":"60 - 70"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time Series Smoothing Improving Forecasting\",\"authors\":\"V. Romanuke\",\"doi\":\"10.2478/acss-2021-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Both statistical and neural network methods may fail in forecasting time series even operating on a great amount of data. It is an open question of which amount fits best to make sufficiently accurate forecasts on it. This implies that the length or time series might be optimised. Hence, the objective is to improve the quality of forecasting by an assumption that parameters are set nearly at their optimal values. To achieve objective, the two types of the benchmark time series are considered: sine-shaped series and random-like series with repeatability. Trend, seasonality, and decay properties embedded into each type. Based on the benchmark of 24 time series models, it is ascertained that, for improving the forecasting, the time series should be smoothed and then downsampled. These operations can be fulfilled successively until the improvement fails. If preliminary smoothing worsens forecasts, the raw time series is straightforwardly downsampled until the forecasting accuracy starts dropping. However, if time series has a visible property of being noised, the preliminary smoothing is strongly recommended.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"17 1\",\"pages\":\"60 - 70\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

统计方法和神经网络方法在预测时间序列时,即使在大量的数据上也可能失败。对于哪种数量最适合对其进行足够准确的预测,这是一个悬而未决的问题。这意味着可以优化长度或时间序列。因此,目标是通过假设参数设置在其最优值附近来提高预测的质量。为了实现这一目标,考虑了两种类型的基准时间序列:正弦型序列和具有可重复性的随机型序列。趋势、季节性和衰减属性嵌入到每个类型中。通过对24个时间序列模型的基准分析,确定了为了提高预测精度,需要对时间序列进行平滑处理,然后进行下采样。这些操作可以依次完成,直到改进失败为止。如果初步平滑使预测恶化,则直接对原始时间序列进行下采样,直到预测精度开始下降。然而,如果时间序列具有明显的被噪声特性,则强烈建议进行初步平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Series Smoothing Improving Forecasting
Abstract Both statistical and neural network methods may fail in forecasting time series even operating on a great amount of data. It is an open question of which amount fits best to make sufficiently accurate forecasts on it. This implies that the length or time series might be optimised. Hence, the objective is to improve the quality of forecasting by an assumption that parameters are set nearly at their optimal values. To achieve objective, the two types of the benchmark time series are considered: sine-shaped series and random-like series with repeatability. Trend, seasonality, and decay properties embedded into each type. Based on the benchmark of 24 time series models, it is ascertained that, for improving the forecasting, the time series should be smoothed and then downsampled. These operations can be fulfilled successively until the improvement fails. If preliminary smoothing worsens forecasts, the raw time series is straightforwardly downsampled until the forecasting accuracy starts dropping. However, if time series has a visible property of being noised, the preliminary smoothing is strongly recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1