{"title":"L2-Net:欧几里得空间中判别Patch描述符的深度学习","authors":"Yurun Tian, Bin Fan, Fuchao Wu","doi":"10.1109/CVPR.2017.649","DOIUrl":null,"url":null,"abstract":"The research focus of designing local patch descriptors has gradually shifted from handcrafted ones (e.g., SIFT) to learned ones. In this paper, we propose to learn high performance descriptor in Euclidean space via the Convolutional Neural Network (CNN). Our method is distinctive in four aspects: (i) We propose a progressive sampling strategy which enables the network to access billions of training samples in a few epochs. (ii) Derived from the basic concept of local patch matching problem, we empha-size the relative distance between descriptors. (iii) Extra supervision is imposed on the intermediate feature maps. (iv) Compactness of the descriptor is taken into account. The proposed network is named as L2-Net since the output descriptor can be matched in Euclidean space by L2 distance. L2-Net achieves state-of-the-art performance on the Brown datasets [16], Oxford dataset [18] and the newly proposed Hpatches dataset [11]. The good generalization ability shown by experiments indicates that L2-Net can serve as a direct substitution of the existing handcrafted descriptors. The pre-trained L2-Net is publicly available.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"6128-6136"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"425","resultStr":"{\"title\":\"L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space\",\"authors\":\"Yurun Tian, Bin Fan, Fuchao Wu\",\"doi\":\"10.1109/CVPR.2017.649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research focus of designing local patch descriptors has gradually shifted from handcrafted ones (e.g., SIFT) to learned ones. In this paper, we propose to learn high performance descriptor in Euclidean space via the Convolutional Neural Network (CNN). Our method is distinctive in four aspects: (i) We propose a progressive sampling strategy which enables the network to access billions of training samples in a few epochs. (ii) Derived from the basic concept of local patch matching problem, we empha-size the relative distance between descriptors. (iii) Extra supervision is imposed on the intermediate feature maps. (iv) Compactness of the descriptor is taken into account. The proposed network is named as L2-Net since the output descriptor can be matched in Euclidean space by L2 distance. L2-Net achieves state-of-the-art performance on the Brown datasets [16], Oxford dataset [18] and the newly proposed Hpatches dataset [11]. The good generalization ability shown by experiments indicates that L2-Net can serve as a direct substitution of the existing handcrafted descriptors. The pre-trained L2-Net is publicly available.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"6128-6136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"425\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space
The research focus of designing local patch descriptors has gradually shifted from handcrafted ones (e.g., SIFT) to learned ones. In this paper, we propose to learn high performance descriptor in Euclidean space via the Convolutional Neural Network (CNN). Our method is distinctive in four aspects: (i) We propose a progressive sampling strategy which enables the network to access billions of training samples in a few epochs. (ii) Derived from the basic concept of local patch matching problem, we empha-size the relative distance between descriptors. (iii) Extra supervision is imposed on the intermediate feature maps. (iv) Compactness of the descriptor is taken into account. The proposed network is named as L2-Net since the output descriptor can be matched in Euclidean space by L2 distance. L2-Net achieves state-of-the-art performance on the Brown datasets [16], Oxford dataset [18] and the newly proposed Hpatches dataset [11]. The good generalization ability shown by experiments indicates that L2-Net can serve as a direct substitution of the existing handcrafted descriptors. The pre-trained L2-Net is publicly available.