{"title":"广义西格玛量子函数","authors":"Alan D Hutson","doi":"10.1080/03610918.2022.2032161","DOIUrl":null,"url":null,"abstract":"<p><p>In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods.</p>","PeriodicalId":45809,"journal":{"name":"China Information","volume":"31 1","pages":"799-813"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959509/pdf/","citationCount":"0","resultStr":"{\"title\":\"The generalized sigmoidal quantile function.\",\"authors\":\"Alan D Hutson\",\"doi\":\"10.1080/03610918.2022.2032161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods.</p>\",\"PeriodicalId\":45809,\"journal\":{\"name\":\"China Information\",\"volume\":\"31 1\",\"pages\":\"799-813\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Information\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2022.2032161\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Information","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2022.2032161","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AREA STUDIES","Score":null,"Total":0}
In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods.
期刊介绍:
China Information presents timely and in-depth analyses of major developments in contemporary China and overseas Chinese communities in the areas of politics, economics, law, ecology, culture, and society, including literature and the arts. China Information pays special attention to views and areas that do not receive sufficient attention in the mainstream discourse on contemporary China. It encourages discussion and debate between different academic traditions, offers a platform to express controversial and dissenting opinions, and promotes research that is historically sensitive and contemporarily relevant.