{"title":"基于Markov游戏的以人为中心的机器人无碰撞导航","authors":"Guo Ye, Qinjie Lin, Tzung-Han Juang, Han Liu","doi":"10.1109/ICRA40945.2020.9196810","DOIUrl":null,"url":null,"abstract":"We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"24 1","pages":"11338-11344"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Collision-free Navigation of Human-centered Robots via Markov Games\",\"authors\":\"Guo Ye, Qinjie Lin, Tzung-Han Juang, Han Liu\",\"doi\":\"10.1109/ICRA40945.2020.9196810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"24 1\",\"pages\":\"11338-11344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collision-free Navigation of Human-centered Robots via Markov Games
We exploit Markov games as a framework for collision-free navigation of human-centered robots. Unlike the classical methods which formulate robot navigation as a single-agent Markov decision process with a static environment, our framework of Markov games adopts a multi-agent formulation with one primary agent representing the robot and the remaining auxiliary agents form a dynamic or even competing environment. Such a framework allows us to develop a path-following type adversarial training strategy to learn a robust decentralized collision avoidance policy. Through thorough experiments on both simulated and real-world mobile robots, we show that the learnt policy outperforms the state-of-the-art algorithms in both sample complexity and runtime robustness.