多间隙放电装置脉冲电热发射装置的流动动力学

E. Shcolnikov, M. Guzeyev, S. Maslennikov, A. Melnik, A. Chebotarev
{"title":"多间隙放电装置脉冲电热发射装置的流动动力学","authors":"E. Shcolnikov, M. Guzeyev, S. Maslennikov, A. Melnik, A. Chebotarev","doi":"10.1109/PPC.1999.823606","DOIUrl":null,"url":null,"abstract":"A multigap scheme of the electrothermal launcher discharge unit is proposed with the purpose to obtain super high quality coatings out of powder materials. The theoretical analysis of the flow dynamics and particles acceleration has shown that such a scheme makes it possible to form the microparticle acceleration region with required parameters. In turn it permits to increase the dimensional range of microparticles to be accelerated up to 40-50 /spl mu/m while preserving high values of their velocity (1.5/spl divide/2 km/s). The experimental study of the flow dynamics in the electrothermal launcher which contains two discharge gaps positioned at some distance along the barrel confirmed the theoretical conclusion. In particular, two-fold increase of the shock-wave velocity behind the second gap was observed. In addition, the shock compressed gas region length has been diminished whereas the gas mass in that region was increased more than twice.","PeriodicalId":11209,"journal":{"name":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","volume":"62 1","pages":"688-691 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flows dynamics in pulse electrothermal launcher with multigap scheme of discharge unit\",\"authors\":\"E. Shcolnikov, M. Guzeyev, S. Maslennikov, A. Melnik, A. Chebotarev\",\"doi\":\"10.1109/PPC.1999.823606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multigap scheme of the electrothermal launcher discharge unit is proposed with the purpose to obtain super high quality coatings out of powder materials. The theoretical analysis of the flow dynamics and particles acceleration has shown that such a scheme makes it possible to form the microparticle acceleration region with required parameters. In turn it permits to increase the dimensional range of microparticles to be accelerated up to 40-50 /spl mu/m while preserving high values of their velocity (1.5/spl divide/2 km/s). The experimental study of the flow dynamics in the electrothermal launcher which contains two discharge gaps positioned at some distance along the barrel confirmed the theoretical conclusion. In particular, two-fold increase of the shock-wave velocity behind the second gap was observed. In addition, the shock compressed gas region length has been diminished whereas the gas mass in that region was increased more than twice.\",\"PeriodicalId\":11209,\"journal\":{\"name\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"volume\":\"62 1\",\"pages\":\"688-691 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.1999.823606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1999.823606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为使粉末材料获得超高质量的涂层,提出了电热发射装置卸料装置的多间隙方案。流动动力学和粒子加速度的理论分析表明,该方案可以形成具有所需参数的微粒加速度区。反过来,它允许增加微粒的尺寸范围,以加速到40-50 /spl mu/m,同时保持它们的高速度值(1.5/spl /2 km/s)。对沿炮管一定距离设置两个放电间隙的电热发射管内流动动力学进行了实验研究,证实了这一理论结论。特别是在第二间隙后,冲击波速度增加了两倍。此外,激波压缩气体区长度减少,而该区域的气体质量增加了两倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flows dynamics in pulse electrothermal launcher with multigap scheme of discharge unit
A multigap scheme of the electrothermal launcher discharge unit is proposed with the purpose to obtain super high quality coatings out of powder materials. The theoretical analysis of the flow dynamics and particles acceleration has shown that such a scheme makes it possible to form the microparticle acceleration region with required parameters. In turn it permits to increase the dimensional range of microparticles to be accelerated up to 40-50 /spl mu/m while preserving high values of their velocity (1.5/spl divide/2 km/s). The experimental study of the flow dynamics in the electrothermal launcher which contains two discharge gaps positioned at some distance along the barrel confirmed the theoretical conclusion. In particular, two-fold increase of the shock-wave velocity behind the second gap was observed. In addition, the shock compressed gas region length has been diminished whereas the gas mass in that region was increased more than twice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas-puff z-pinch plasmas driven by inductive voltage adder-inductive energy storage pulsed power generator ASO-X The evolution of pulsed discharges over PTFE in the presence of various cover gases Numerical research of radiation parameters in cavities irradiated from imploding double-cascade Z-pinch 100 kV, 10 pps repetitive impulse current generator Z, ZX, and X-1: a realistic path to high fusion yield
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1