He Li , Weiliang Dong , Yue Zhang , Kuan Liu , Wenming Zhang , Min Zhang , Jiangfeng Ma , Min Jiang
{"title":"Acidovorax装置72W硝化酶催化效率的提高及其在3-氰吡啶制烟酸生物转化中的应用","authors":"He Li , Weiliang Dong , Yue Zhang , Kuan Liu , Wenming Zhang , Min Zhang , Jiangfeng Ma , Min Jiang","doi":"10.1016/j.molcatb.2017.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the catalytic efficiency using NitA from <em>Acidovorax facilis</em> 72W for nicotinic acid (NA) production was investigated and further improved by site-directed mutagenesis. Results showed that the specific activity of mutated NitA-C2 (F168V-S192F) towards 3-cyanopyridine increased 5-fold to 35<!--> <!-->U<!--> <!-->mg<sup>−1</sup> protein. Further characterization of the biochemical properties of both nitrilases showed the optimal pH and temperature were 6.0–8.0 and 60<!--> <!-->°C, respectively, whereas the pH and thermal stability of NitA-C2 were decreased. Finally, whole cell catalysis was adopted for NA production and a 100% conversion yield was achieved under 0.1<!--> <!-->mol<!--> <!-->L<sup>−1</sup> 3-cyanopyridine for both strains. Besides, the conversion rate by <em>E. coli</em> BL21 (DE3-pET-<em>nitA</em>-C2) reached to 1.0<!--> <!-->mmol<!--> <!-->min<sup>−1</sup> <!-->g<sup>−1</sup> wet cell weight, which was 3-fold higher than that by <em>E. coli</em> BL21 (DE3-pET-<em>nitA</em>). These results indicated that the mutated NitA-C2 was a promising candidate which holds potential application in biological NA production.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S459-S467"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.03.010","citationCount":"8","resultStr":"{\"title\":\"Enhanced catalytic efficiency of nitrilase from Acidovorax facilis 72W and application in bioconversion of 3-cyanopyridine to nicotinic acid\",\"authors\":\"He Li , Weiliang Dong , Yue Zhang , Kuan Liu , Wenming Zhang , Min Zhang , Jiangfeng Ma , Min Jiang\",\"doi\":\"10.1016/j.molcatb.2017.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the catalytic efficiency using NitA from <em>Acidovorax facilis</em> 72W for nicotinic acid (NA) production was investigated and further improved by site-directed mutagenesis. Results showed that the specific activity of mutated NitA-C2 (F168V-S192F) towards 3-cyanopyridine increased 5-fold to 35<!--> <!-->U<!--> <!-->mg<sup>−1</sup> protein. Further characterization of the biochemical properties of both nitrilases showed the optimal pH and temperature were 6.0–8.0 and 60<!--> <!-->°C, respectively, whereas the pH and thermal stability of NitA-C2 were decreased. Finally, whole cell catalysis was adopted for NA production and a 100% conversion yield was achieved under 0.1<!--> <!-->mol<!--> <!-->L<sup>−1</sup> 3-cyanopyridine for both strains. Besides, the conversion rate by <em>E. coli</em> BL21 (DE3-pET-<em>nitA</em>-C2) reached to 1.0<!--> <!-->mmol<!--> <!-->min<sup>−1</sup> <!-->g<sup>−1</sup> wet cell weight, which was 3-fold higher than that by <em>E. coli</em> BL21 (DE3-pET-<em>nitA</em>). These results indicated that the mutated NitA-C2 was a promising candidate which holds potential application in biological NA production.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages S459-S467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.03.010\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117717300425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117717300425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
Enhanced catalytic efficiency of nitrilase from Acidovorax facilis 72W and application in bioconversion of 3-cyanopyridine to nicotinic acid
In this study, the catalytic efficiency using NitA from Acidovorax facilis 72W for nicotinic acid (NA) production was investigated and further improved by site-directed mutagenesis. Results showed that the specific activity of mutated NitA-C2 (F168V-S192F) towards 3-cyanopyridine increased 5-fold to 35 U mg−1 protein. Further characterization of the biochemical properties of both nitrilases showed the optimal pH and temperature were 6.0–8.0 and 60 °C, respectively, whereas the pH and thermal stability of NitA-C2 were decreased. Finally, whole cell catalysis was adopted for NA production and a 100% conversion yield was achieved under 0.1 mol L−1 3-cyanopyridine for both strains. Besides, the conversion rate by E. coli BL21 (DE3-pET-nitA-C2) reached to 1.0 mmol min−1 g−1 wet cell weight, which was 3-fold higher than that by E. coli BL21 (DE3-pET-nitA). These results indicated that the mutated NitA-C2 was a promising candidate which holds potential application in biological NA production.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.