Sheng Ye, Hong Wang, Fenghua Zhao, T. Yuan, Jie Liang, Yujiang Fan, Xing‐dong Zhang
{"title":"应用分子标记技术评价血小板活化与生物材料降解的关系","authors":"Sheng Ye, Hong Wang, Fenghua Zhao, T. Yuan, Jie Liang, Yujiang Fan, Xing‐dong Zhang","doi":"10.2139/ssrn.3335365","DOIUrl":null,"url":null,"abstract":"The evaluation of platelet activation of medical devices using in cardiovascular system is very meaningful. Currently, it is mainly based on the ISO10993-4 international standard. However, the methods given in the standard are originally designed for non-degradable materials, the applicability, the operability, and the convenience to degradable materials of the methods needs to be carefully studied. In this study, the platelet activation by 3 typical degradable materials (collagen, polylactic acid and hydroxyapatite) were evaluated by three widely used molecular markers CD62P, CD63, CD40L and the three molecular markers PF4, β-TG and TXB2 mentioned in the ISO10993-4 standard. The variations of the six markers in a simulated degradation process of the degradable materials were compared. It was found that the degree of platelet activation changed with the degradation and was strongly relative with the surface physicochemical properties. For example, when the surface roughness and contact angle of the materials change, the degree of platelet activation also changes. These six platelet activation molecular markers can to be the promising key for the assessing of platelet function in degradable medical devices which is instructive for the quality control and the development of new degradable medical devices.","PeriodicalId":8928,"journal":{"name":"Biomaterials eJournal","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Platelet Activation Related to the Degradation of Biomaterials by Scheme of Molecular Markers\",\"authors\":\"Sheng Ye, Hong Wang, Fenghua Zhao, T. Yuan, Jie Liang, Yujiang Fan, Xing‐dong Zhang\",\"doi\":\"10.2139/ssrn.3335365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of platelet activation of medical devices using in cardiovascular system is very meaningful. Currently, it is mainly based on the ISO10993-4 international standard. However, the methods given in the standard are originally designed for non-degradable materials, the applicability, the operability, and the convenience to degradable materials of the methods needs to be carefully studied. In this study, the platelet activation by 3 typical degradable materials (collagen, polylactic acid and hydroxyapatite) were evaluated by three widely used molecular markers CD62P, CD63, CD40L and the three molecular markers PF4, β-TG and TXB2 mentioned in the ISO10993-4 standard. The variations of the six markers in a simulated degradation process of the degradable materials were compared. It was found that the degree of platelet activation changed with the degradation and was strongly relative with the surface physicochemical properties. For example, when the surface roughness and contact angle of the materials change, the degree of platelet activation also changes. These six platelet activation molecular markers can to be the promising key for the assessing of platelet function in degradable medical devices which is instructive for the quality control and the development of new degradable medical devices.\",\"PeriodicalId\":8928,\"journal\":{\"name\":\"Biomaterials eJournal\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3335365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3335365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the Platelet Activation Related to the Degradation of Biomaterials by Scheme of Molecular Markers
The evaluation of platelet activation of medical devices using in cardiovascular system is very meaningful. Currently, it is mainly based on the ISO10993-4 international standard. However, the methods given in the standard are originally designed for non-degradable materials, the applicability, the operability, and the convenience to degradable materials of the methods needs to be carefully studied. In this study, the platelet activation by 3 typical degradable materials (collagen, polylactic acid and hydroxyapatite) were evaluated by three widely used molecular markers CD62P, CD63, CD40L and the three molecular markers PF4, β-TG and TXB2 mentioned in the ISO10993-4 standard. The variations of the six markers in a simulated degradation process of the degradable materials were compared. It was found that the degree of platelet activation changed with the degradation and was strongly relative with the surface physicochemical properties. For example, when the surface roughness and contact angle of the materials change, the degree of platelet activation also changes. These six platelet activation molecular markers can to be the promising key for the assessing of platelet function in degradable medical devices which is instructive for the quality control and the development of new degradable medical devices.