{"title":"改进核磁共振成像磁场梯度线圈","authors":"B. Suits, D. Wilken","doi":"10.1088/0022-3735/22/8/007","DOIUrl":null,"url":null,"abstract":"A general method of designing magnetic field gradient coils for NMR imaging is suggested and developed. The method utilises a combination of exact calculations for infinite continuous current sheets with a series expansion method to analyse finite discrete models of the continuous case. The method is applied to two orientations for coils on a cylindrical form resulting in improvements of existing gradient coil designs.","PeriodicalId":16791,"journal":{"name":"Journal of Physics E: Scientific Instruments","volume":"84 12 1","pages":"565-573"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Improving magnetic field gradient coils for NMR imaging\",\"authors\":\"B. Suits, D. Wilken\",\"doi\":\"10.1088/0022-3735/22/8/007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general method of designing magnetic field gradient coils for NMR imaging is suggested and developed. The method utilises a combination of exact calculations for infinite continuous current sheets with a series expansion method to analyse finite discrete models of the continuous case. The method is applied to two orientations for coils on a cylindrical form resulting in improvements of existing gradient coil designs.\",\"PeriodicalId\":16791,\"journal\":{\"name\":\"Journal of Physics E: Scientific Instruments\",\"volume\":\"84 12 1\",\"pages\":\"565-573\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics E: Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0022-3735/22/8/007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics E: Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0022-3735/22/8/007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving magnetic field gradient coils for NMR imaging
A general method of designing magnetic field gradient coils for NMR imaging is suggested and developed. The method utilises a combination of exact calculations for infinite continuous current sheets with a series expansion method to analyse finite discrete models of the continuous case. The method is applied to two orientations for coils on a cylindrical form resulting in improvements of existing gradient coil designs.