{"title":"基于Ackermann公式的偏航运动滑模控制","authors":"Dilip Kumar Malav, Rajashree Taparia","doi":"10.1109/COMPTELIX.2017.8004045","DOIUrl":null,"url":null,"abstract":"A ship in open sea is a very complex dynamic system. It is affected by three types of perturbations: hydrodynamic perturbations induced by the ship movements, external perturbations produced by wind, waves, and sea currents, and those produced by the control systems of the ship, like propulsion and steering systems. The external perturbations, especially the waves, are the most important, because of their high energy, which can not be completely eliminated by the control systems. The sliding mode control provides the control which is robust to perturbation. The discontinuity plane for sliding mode control is designed in an explicit form using Ackermann's formula. The control of the system is being independent of perturbations applied.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"71 1","pages":"628-632"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sliding mode control of yaw movement based on Ackermann's formula\",\"authors\":\"Dilip Kumar Malav, Rajashree Taparia\",\"doi\":\"10.1109/COMPTELIX.2017.8004045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ship in open sea is a very complex dynamic system. It is affected by three types of perturbations: hydrodynamic perturbations induced by the ship movements, external perturbations produced by wind, waves, and sea currents, and those produced by the control systems of the ship, like propulsion and steering systems. The external perturbations, especially the waves, are the most important, because of their high energy, which can not be completely eliminated by the control systems. The sliding mode control provides the control which is robust to perturbation. The discontinuity plane for sliding mode control is designed in an explicit form using Ackermann's formula. The control of the system is being independent of perturbations applied.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"71 1\",\"pages\":\"628-632\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8004045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sliding mode control of yaw movement based on Ackermann's formula
A ship in open sea is a very complex dynamic system. It is affected by three types of perturbations: hydrodynamic perturbations induced by the ship movements, external perturbations produced by wind, waves, and sea currents, and those produced by the control systems of the ship, like propulsion and steering systems. The external perturbations, especially the waves, are the most important, because of their high energy, which can not be completely eliminated by the control systems. The sliding mode control provides the control which is robust to perturbation. The discontinuity plane for sliding mode control is designed in an explicit form using Ackermann's formula. The control of the system is being independent of perturbations applied.