尿液颜色检测的自动计算机视觉系统

Q4 Biochemistry, Genetics and Molecular Biology Journal of Biomolecular Techniques Pub Date : 2023-04-01 DOI:10.51173/jt.v5i1.896
Ban Shamil Abdulwahed, Ali Al-Naji, Izzat Al-Rayahi, Ammar Yahya, Asanka G. Perera
{"title":"尿液颜色检测的自动计算机视觉系统","authors":"Ban Shamil Abdulwahed, Ali Al-Naji, Izzat Al-Rayahi, Ammar Yahya, Asanka G. Perera","doi":"10.51173/jt.v5i1.896","DOIUrl":null,"url":null,"abstract":"Urine color analysis is one of the most helpful indicators of health status, and any changes in urine color might be a symptom of serious disease, dehydration of the body, or caused by drugs. To get better assistance for urine color detection in the proposed system, a urine color automatic identification has been developed based on computer vision. The proposed system uses a web camera to capture an image in real-time, analyze it, and then classify the color of urine by using the random forest (RF) algorithm and show the result via the Graphical User Interface (GUI). In addition, the proposed system can send the results to the mobile phone of the patient or care provider by using an Arduino microcontroller and GSM module. Moreover, sending a voice message about the color of urine is related to pathological conditions. The results showed that the proposed system has high accuracy (approximately about 97%) in detecting urine color under different light conditions, with low cost, short time, and easy implementation. In the comparison with the current methods the proposed system has maximum accuracy and minimum error rate. This methodology can pave the way for an additional case study in medical applications, particularly in diagnosis, and patient health monitoring.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Computer Vision System for Urine Color Detection\",\"authors\":\"Ban Shamil Abdulwahed, Ali Al-Naji, Izzat Al-Rayahi, Ammar Yahya, Asanka G. Perera\",\"doi\":\"10.51173/jt.v5i1.896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urine color analysis is one of the most helpful indicators of health status, and any changes in urine color might be a symptom of serious disease, dehydration of the body, or caused by drugs. To get better assistance for urine color detection in the proposed system, a urine color automatic identification has been developed based on computer vision. The proposed system uses a web camera to capture an image in real-time, analyze it, and then classify the color of urine by using the random forest (RF) algorithm and show the result via the Graphical User Interface (GUI). In addition, the proposed system can send the results to the mobile phone of the patient or care provider by using an Arduino microcontroller and GSM module. Moreover, sending a voice message about the color of urine is related to pathological conditions. The results showed that the proposed system has high accuracy (approximately about 97%) in detecting urine color under different light conditions, with low cost, short time, and easy implementation. In the comparison with the current methods the proposed system has maximum accuracy and minimum error rate. This methodology can pave the way for an additional case study in medical applications, particularly in diagnosis, and patient health monitoring.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i1.896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i1.896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

尿液颜色分析是健康状况最有用的指标之一,尿液颜色的任何变化都可能是严重疾病、身体脱水或药物引起的症状。为了更好地辅助尿液颜色检测,本文开发了一种基于计算机视觉的尿液颜色自动识别系统。该系统利用网络摄像头实时采集图像,对图像进行分析,然后利用随机森林(RF)算法对尿液颜色进行分类,并通过图形用户界面(GUI)显示结果。此外,本文提出的系统可以通过Arduino单片机和GSM模块将检测结果发送到患者或医护人员的手机上。此外,发送有关尿液颜色的语音信息与病理状况有关。结果表明,该系统在不同光照条件下检测尿液颜色具有较高的准确率(约97%),且成本低、时间短、易于实现。与现有方法相比,该方法具有最高的准确率和最小的错误率。这种方法可以为医学应用中的额外案例研究铺平道路,特别是在诊断和患者健康监测方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Computer Vision System for Urine Color Detection
Urine color analysis is one of the most helpful indicators of health status, and any changes in urine color might be a symptom of serious disease, dehydration of the body, or caused by drugs. To get better assistance for urine color detection in the proposed system, a urine color automatic identification has been developed based on computer vision. The proposed system uses a web camera to capture an image in real-time, analyze it, and then classify the color of urine by using the random forest (RF) algorithm and show the result via the Graphical User Interface (GUI). In addition, the proposed system can send the results to the mobile phone of the patient or care provider by using an Arduino microcontroller and GSM module. Moreover, sending a voice message about the color of urine is related to pathological conditions. The results showed that the proposed system has high accuracy (approximately about 97%) in detecting urine color under different light conditions, with low cost, short time, and easy implementation. In the comparison with the current methods the proposed system has maximum accuracy and minimum error rate. This methodology can pave the way for an additional case study in medical applications, particularly in diagnosis, and patient health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Techniques
Journal of Biomolecular Techniques Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
2.50
自引率
0.00%
发文量
9
期刊介绍: The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.
期刊最新文献
Effect of Different Polishing Systems on Surface Roughness of IPS Empress Ceramic Materials Evaluation of the Effect of Nano and Micro Hydroxyapatite Particles on the Impact Strength of Acrylic Resin: In Vitro Study The Effect of Recycled CAD/CAM PEEK Fibers on the Transverse Strength of Repaired Acrylic Resin Assessment of Vitamin D3 Level Among a Sample of Type 2 Diabetic Patients Attending Diabetes and Endocrinology Center in Al-Hilla City The Impact of Digital Transformation in Enhancing Operational Performance: An Applied Study in the Kirkuk Electricity Distribution Branch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1