{"title":"氘核靶上的总反应截面及组成中子和质子的蚀效应","authors":"W. Horiuchi, Y. Suzuki, T. Uesaka, M. Miwa","doi":"10.1103/physrevc.102.054601","DOIUrl":null,"url":null,"abstract":"Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei. \nPurpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections. \nMethods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account. \nResults: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined. \nConclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total reaction cross section on a deuteron target and the eclipse effect of the constituent neutron and proton\",\"authors\":\"W. Horiuchi, Y. Suzuki, T. Uesaka, M. Miwa\",\"doi\":\"10.1103/physrevc.102.054601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei. \\nPurpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections. \\nMethods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account. \\nResults: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined. \\nConclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.\",\"PeriodicalId\":8463,\"journal\":{\"name\":\"arXiv: Nuclear Theory\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.102.054601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevc.102.054601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total reaction cross section on a deuteron target and the eclipse effect of the constituent neutron and proton
Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei.
Purpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections.
Methods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account.
Results: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined.
Conclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.