M. Ogawa, R. Hino, Y. Inagaki, K. Kunitomi, K. Onuki, H. Takegami
{"title":"日本高温气冷堆及制氢发展现状","authors":"M. Ogawa, R. Hino, Y. Inagaki, K. Kunitomi, K. Onuki, H. Takegami","doi":"10.1787/9789264087156-6-EN","DOIUrl":null,"url":null,"abstract":"The high temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is particularly attractive due to its unique capability of producing high temperature helium gas in addition to its fully inherent and passive safety characteristics. The HTGR-based production of hydrogen, the energy carrier for an emerging hydrogen economy, is expected to be among the most promising applications to solve the current environmental issues of CO2 emission. With this understanding the development studies of HTGR cogeneration system including hydrogen production have been carried out in Japan. This paper presents the 2100 vision of JAEA on future perspective of energy supply, especially on HTGR utilisation in the field of iron manufacturing, chemical industries, oil refineries, etc. In addition, this paper presents the present status of the HTTR Project including research and development activities of HTGR reactor technology, hydrogen production technology with the thermochemical water-splitting IS process, and the commercial HTGR plant design.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"18 1","pages":"47-58"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Present status of HTGR and hydrogen production development in JAEA\",\"authors\":\"M. Ogawa, R. Hino, Y. Inagaki, K. Kunitomi, K. Onuki, H. Takegami\",\"doi\":\"10.1787/9789264087156-6-EN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is particularly attractive due to its unique capability of producing high temperature helium gas in addition to its fully inherent and passive safety characteristics. The HTGR-based production of hydrogen, the energy carrier for an emerging hydrogen economy, is expected to be among the most promising applications to solve the current environmental issues of CO2 emission. With this understanding the development studies of HTGR cogeneration system including hydrogen production have been carried out in Japan. This paper presents the 2100 vision of JAEA on future perspective of energy supply, especially on HTGR utilisation in the field of iron manufacturing, chemical industries, oil refineries, etc. In addition, this paper presents the present status of the HTTR Project including research and development activities of HTGR reactor technology, hydrogen production technology with the thermochemical water-splitting IS process, and the commercial HTGR plant design.\",\"PeriodicalId\":88069,\"journal\":{\"name\":\"Nuclear science abstracts\",\"volume\":\"18 1\",\"pages\":\"47-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear science abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1787/9789264087156-6-EN\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264087156-6-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Present status of HTGR and hydrogen production development in JAEA
The high temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is particularly attractive due to its unique capability of producing high temperature helium gas in addition to its fully inherent and passive safety characteristics. The HTGR-based production of hydrogen, the energy carrier for an emerging hydrogen economy, is expected to be among the most promising applications to solve the current environmental issues of CO2 emission. With this understanding the development studies of HTGR cogeneration system including hydrogen production have been carried out in Japan. This paper presents the 2100 vision of JAEA on future perspective of energy supply, especially on HTGR utilisation in the field of iron manufacturing, chemical industries, oil refineries, etc. In addition, this paper presents the present status of the HTTR Project including research and development activities of HTGR reactor technology, hydrogen production technology with the thermochemical water-splitting IS process, and the commercial HTGR plant design.