{"title":"基于能效的重型车辆新型串联式液电混合动力系统控制模型研究","authors":"Soroosh Mahmoodi, H. Guoqing, M. N. Khajavi","doi":"10.1155/2016/2417946","DOIUrl":null,"url":null,"abstract":"An interesting model which was able to recuperate and reuse braking energy was investigated. It was named series hybrid hydraulic/electric system (SHHES). The innovated model was presented for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage sources. The novelty of this paper was investigation of a new series hybrid vehicle with triple sources, combustion engine, electric motor, and hydraulic sources. It was simulated with MATLAB-Simulink and different operational mode of control system was investigated. The aim was to improve the efficiency of the energy-loading components in the power train system and the transmission system independently. The ability to store and reuse the kinetic energy was added to the system to prevent energy wasting while the vehicle was braking. Control models were also investigated to realize suitable control algorithms to offer the best efficiency in system components for different vehicle conditions. The torque control strategy based on fuzzy logic controller was proposed to achieve better vehicle performance while the fuel consumption was minimized. The results implied efficient storage and usage in the transmission system. A small vehicle model experimentally verified the simulation results.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"10 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of Control Model in a New Series Hybrid Hydraulic/Electric System for Heavy Vehicles Based on Energy Efficiency\",\"authors\":\"Soroosh Mahmoodi, H. Guoqing, M. N. Khajavi\",\"doi\":\"10.1155/2016/2417946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interesting model which was able to recuperate and reuse braking energy was investigated. It was named series hybrid hydraulic/electric system (SHHES). The innovated model was presented for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage sources. The novelty of this paper was investigation of a new series hybrid vehicle with triple sources, combustion engine, electric motor, and hydraulic sources. It was simulated with MATLAB-Simulink and different operational mode of control system was investigated. The aim was to improve the efficiency of the energy-loading components in the power train system and the transmission system independently. The ability to store and reuse the kinetic energy was added to the system to prevent energy wasting while the vehicle was braking. Control models were also investigated to realize suitable control algorithms to offer the best efficiency in system components for different vehicle conditions. The torque control strategy based on fuzzy logic controller was proposed to achieve better vehicle performance while the fuel consumption was minimized. The results implied efficient storage and usage in the transmission system. A small vehicle model experimentally verified the simulation results.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"10 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/2417946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/2417946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Investigation of Control Model in a New Series Hybrid Hydraulic/Electric System for Heavy Vehicles Based on Energy Efficiency
An interesting model which was able to recuperate and reuse braking energy was investigated. It was named series hybrid hydraulic/electric system (SHHES). The innovated model was presented for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage sources. The novelty of this paper was investigation of a new series hybrid vehicle with triple sources, combustion engine, electric motor, and hydraulic sources. It was simulated with MATLAB-Simulink and different operational mode of control system was investigated. The aim was to improve the efficiency of the energy-loading components in the power train system and the transmission system independently. The ability to store and reuse the kinetic energy was added to the system to prevent energy wasting while the vehicle was braking. Control models were also investigated to realize suitable control algorithms to offer the best efficiency in system components for different vehicle conditions. The torque control strategy based on fuzzy logic controller was proposed to achieve better vehicle performance while the fuel consumption was minimized. The results implied efficient storage and usage in the transmission system. A small vehicle model experimentally verified the simulation results.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.