Yang Wang, Haimeng Chen, Bo Gao, Xianyong Xiao, Ricardo Torquato, Fernanda C. L. Trindade
{"title":"考虑频率耦合的高可再生能源渗透电力系统谐波共振分析","authors":"Yang Wang, Haimeng Chen, Bo Gao, Xianyong Xiao, Ricardo Torquato, Fernanda C. L. Trindade","doi":"10.1049/enc2.12068","DOIUrl":null,"url":null,"abstract":"<p>Renewable energy is a key solution to address the challenges of energy shortages and climate change. Consequently, high-renewable-energy-penetrated power systems (HREPPS) have become a popular trend. This has led to the increasing use of voltage-source converters (VSCs) as renewable-energy interfaces. Meanwhile, other VSC-based applications such as flexible alternating current transmission systems (FACTS) are used for supporting the energy conversion of renewable energy. With the large integration of VSC-interfaced devices, there is a rising concern regarding their impact on the harmonic resonance of power systems. In this study, a new harmonically coupled impedance model is proposed to inspect the harmonic resonance caused by VSC-interfaced devices in HREPPS. The model is derived based on the penetration of a multifrequency harmonic, enabling it to fully reveal the frequency coupling effect in the system. Research has shown that frequency coupling plays an important role in harmonic resonance analysis. The correctness of the proposed harmonic impedance model and its effectiveness on harmonic resonance analysis were verified using time-domain simulations of a real-life photovoltaic integrated system.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"3 5","pages":"333-344"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12068","citationCount":"2","resultStr":"{\"title\":\"Harmonic resonance analysis in high-renewable-energy-penetrated power systems considering frequency coupling\",\"authors\":\"Yang Wang, Haimeng Chen, Bo Gao, Xianyong Xiao, Ricardo Torquato, Fernanda C. L. Trindade\",\"doi\":\"10.1049/enc2.12068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renewable energy is a key solution to address the challenges of energy shortages and climate change. Consequently, high-renewable-energy-penetrated power systems (HREPPS) have become a popular trend. This has led to the increasing use of voltage-source converters (VSCs) as renewable-energy interfaces. Meanwhile, other VSC-based applications such as flexible alternating current transmission systems (FACTS) are used for supporting the energy conversion of renewable energy. With the large integration of VSC-interfaced devices, there is a rising concern regarding their impact on the harmonic resonance of power systems. In this study, a new harmonically coupled impedance model is proposed to inspect the harmonic resonance caused by VSC-interfaced devices in HREPPS. The model is derived based on the penetration of a multifrequency harmonic, enabling it to fully reveal the frequency coupling effect in the system. Research has shown that frequency coupling plays an important role in harmonic resonance analysis. The correctness of the proposed harmonic impedance model and its effectiveness on harmonic resonance analysis were verified using time-domain simulations of a real-life photovoltaic integrated system.</p>\",\"PeriodicalId\":100467,\"journal\":{\"name\":\"Energy Conversion and Economics\",\"volume\":\"3 5\",\"pages\":\"333-344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12068\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonic resonance analysis in high-renewable-energy-penetrated power systems considering frequency coupling
Renewable energy is a key solution to address the challenges of energy shortages and climate change. Consequently, high-renewable-energy-penetrated power systems (HREPPS) have become a popular trend. This has led to the increasing use of voltage-source converters (VSCs) as renewable-energy interfaces. Meanwhile, other VSC-based applications such as flexible alternating current transmission systems (FACTS) are used for supporting the energy conversion of renewable energy. With the large integration of VSC-interfaced devices, there is a rising concern regarding their impact on the harmonic resonance of power systems. In this study, a new harmonically coupled impedance model is proposed to inspect the harmonic resonance caused by VSC-interfaced devices in HREPPS. The model is derived based on the penetration of a multifrequency harmonic, enabling it to fully reveal the frequency coupling effect in the system. Research has shown that frequency coupling plays an important role in harmonic resonance analysis. The correctness of the proposed harmonic impedance model and its effectiveness on harmonic resonance analysis were verified using time-domain simulations of a real-life photovoltaic integrated system.