地震数据的张量超分辨率

Songjie Liao, Xiao-Yang Liu, Feng Qian, Miao Yin, Guangmin Hu
{"title":"地震数据的张量超分辨率","authors":"Songjie Liao, Xiao-Yang Liu, Feng Qian, Miao Yin, Guangmin Hu","doi":"10.1109/ICASSP.2019.8683419","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for generating high-granularity three-dimensional (3D) seismic data from low-granularity data based on tensor sparse coding, which jointly trains a high-granularity dictionary and a low-granularity dictionary. First, considering the high-dimensional properties of seismic data, we introduce tensor sparse coding to seismic data interpolation. Second, we propose that the dictionary pairs trained by low-granularity seismic data and high-granularity seismic data have the same sparse representation, which are used to recover high-granularity data with the high-granularity dictionary. Finally, experiments on the seismic data of an actual field show that the proposed method effectively perform seismic trace interpolation and can improve the resolution of seismic data imaging.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"8598-8602"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tensor Super-resolution for Seismic Data\",\"authors\":\"Songjie Liao, Xiao-Yang Liu, Feng Qian, Miao Yin, Guangmin Hu\",\"doi\":\"10.1109/ICASSP.2019.8683419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method for generating high-granularity three-dimensional (3D) seismic data from low-granularity data based on tensor sparse coding, which jointly trains a high-granularity dictionary and a low-granularity dictionary. First, considering the high-dimensional properties of seismic data, we introduce tensor sparse coding to seismic data interpolation. Second, we propose that the dictionary pairs trained by low-granularity seismic data and high-granularity seismic data have the same sparse representation, which are used to recover high-granularity data with the high-granularity dictionary. Finally, experiments on the seismic data of an actual field show that the proposed method effectively perform seismic trace interpolation and can improve the resolution of seismic data imaging.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"12 1\",\"pages\":\"8598-8602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于张量稀疏编码的从低粒度数据生成高粒度三维地震数据的新方法,该方法联合训练一个高粒度字典和一个低粒度字典。首先,考虑到地震数据的高维特性,将张量稀疏编码引入地震数据插值。其次,提出由低粒度地震数据和高粒度地震数据训练的字典对具有相同的稀疏表示,用高粒度字典恢复高粒度数据;最后,在实际现场地震数据上进行了实验,结果表明,该方法能有效地进行地震道插值,提高了地震数据成像的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor Super-resolution for Seismic Data
In this paper, we propose a novel method for generating high-granularity three-dimensional (3D) seismic data from low-granularity data based on tensor sparse coding, which jointly trains a high-granularity dictionary and a low-granularity dictionary. First, considering the high-dimensional properties of seismic data, we introduce tensor sparse coding to seismic data interpolation. Second, we propose that the dictionary pairs trained by low-granularity seismic data and high-granularity seismic data have the same sparse representation, which are used to recover high-granularity data with the high-granularity dictionary. Finally, experiments on the seismic data of an actual field show that the proposed method effectively perform seismic trace interpolation and can improve the resolution of seismic data imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1