naoh促进一锅法合成芳基异硫氰酸酯

Xinyun Liu, Hang Li, X. Yin
{"title":"naoh促进一锅法合成芳基异硫氰酸酯","authors":"Xinyun Liu, Hang Li, X. Yin","doi":"10.1080/10426507.2021.1927031","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we have established a green synthesis of aryl isothiocyanates promoted by the low-cost and readily available NaOH from aryl amines and carbon disulfide in a one-pot procedure. The developed protocol features no extra desulfurating reagents and mild benchtop conditions, in which NaOH serves as both the base and the desulfurating reagent to decompose the dithiocarbamate intermediate. Fourteen examples of aryl amines bearing electronic neutral, rich and poor substituents, as well as benzylamine, have proved to be compatible substrates in the developed method to furnish the corresponding isothiocyanates. The reaction has been performed on a gram scale to further demonstrate its synthetic utility. Compared to the reported base-promoted synthesis of aryl isothiocyanates that requires the use of special equipment, such as the ball mill or the microwave reactor, the simplicity in operation and scalability enables this method to efficiently access a variety of aryl isothiocyanates. Graphical Abstract","PeriodicalId":20043,"journal":{"name":"Phosphorus Sulfur and Silicon and The Related Elements","volume":"51 1","pages":"839 - 844"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NaOH-promoted one-pot aryl isothiocyanate synthesis under mild benchtop conditions\",\"authors\":\"Xinyun Liu, Hang Li, X. Yin\",\"doi\":\"10.1080/10426507.2021.1927031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we have established a green synthesis of aryl isothiocyanates promoted by the low-cost and readily available NaOH from aryl amines and carbon disulfide in a one-pot procedure. The developed protocol features no extra desulfurating reagents and mild benchtop conditions, in which NaOH serves as both the base and the desulfurating reagent to decompose the dithiocarbamate intermediate. Fourteen examples of aryl amines bearing electronic neutral, rich and poor substituents, as well as benzylamine, have proved to be compatible substrates in the developed method to furnish the corresponding isothiocyanates. The reaction has been performed on a gram scale to further demonstrate its synthetic utility. Compared to the reported base-promoted synthesis of aryl isothiocyanates that requires the use of special equipment, such as the ball mill or the microwave reactor, the simplicity in operation and scalability enables this method to efficiently access a variety of aryl isothiocyanates. Graphical Abstract\",\"PeriodicalId\":20043,\"journal\":{\"name\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"volume\":\"51 1\",\"pages\":\"839 - 844\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10426507.2021.1927031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus Sulfur and Silicon and The Related Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10426507.2021.1927031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们建立了一种以芳基胺和二硫化碳为原料,利用低成本、易得的氢氧化钠在一锅法中绿色合成芳基异硫氰酸酯的方法。所开发的方案不需要额外的脱硫剂,并且在温和的台架条件下,NaOH同时作为碱和脱硫剂来分解二硫代氨基甲酸酯中间体。14个具有电子中性的芳基胺、富取代基和贫取代基以及苄胺的例子已被证明是在所开发的方法中提供相应的异硫氰酸酯的相容底物。该反应已在克尺度上进行,以进一步证明其合成效用。与已有报道的需要使用特殊设备(如球磨机或微波反应器)的碱促进芳基异硫氰酸酯合成相比,操作简单和可扩展性使该方法能够有效地获得各种芳基异硫氰酸酯。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NaOH-promoted one-pot aryl isothiocyanate synthesis under mild benchtop conditions
Abstract In this work, we have established a green synthesis of aryl isothiocyanates promoted by the low-cost and readily available NaOH from aryl amines and carbon disulfide in a one-pot procedure. The developed protocol features no extra desulfurating reagents and mild benchtop conditions, in which NaOH serves as both the base and the desulfurating reagent to decompose the dithiocarbamate intermediate. Fourteen examples of aryl amines bearing electronic neutral, rich and poor substituents, as well as benzylamine, have proved to be compatible substrates in the developed method to furnish the corresponding isothiocyanates. The reaction has been performed on a gram scale to further demonstrate its synthetic utility. Compared to the reported base-promoted synthesis of aryl isothiocyanates that requires the use of special equipment, such as the ball mill or the microwave reactor, the simplicity in operation and scalability enables this method to efficiently access a variety of aryl isothiocyanates. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on TiO2 spin-coated thin films effect on the optoelectronic properties of stain-etched porous silicon for solar cell applications Enzymatic resolution of heterocyclic intermediates for biologically active compound preparation Bis(2-furanylmethyl)monospiro(N/N)cyclotriphosphazenes: synthesis, structural characterization, antiproliferative, and antimigratory activity studies Synthesis of γ-keto sulfones via sulfa-Michael reactions in Brønsted acidic deep eutectic solvent Phospha-Mannich reactions of phosphinous acids R2P–OH and their derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1