{"title":"热带气旋实验室模式直接数值模拟中的角动量传递","authors":"A. Evgrafova, A. Sukhanovskii","doi":"10.1080/03091929.2022.2066659","DOIUrl":null,"url":null,"abstract":"ABSTRACT Numerical simulations of a laboratory model of a tropical cyclone are carried out for different rotation rates. Particular attention is paid to the non-stationary stage of intensive cyclonic vortex formation. The transfer of angular momentum plays a key role in the formation of cyclonic and anticyclonic flows; therefore, a detailed analysis of the redistribution and variation of angular momentum is given. The time evolution of angular momentum fluxes and total angular momentum strongly depend on the rotation rate. It is shown that intensive cyclonic motion with velocity exceeding initial values substantially (ten or more times) is a result of accumulation in the centre of a small fraction of global angular momentum of a fluid layer (from 0.25% at fast rotation to 2% at slow rotation). The integral angular momentum of the anticyclonic flow is significantly larger than that of the cyclonic flow, mainly because of the relatively large fluid volume of the anticyclonic flow. Another important result is that the rotating fluid layer very quickly adapts to new boundary conditions (heating and cooling). Approximately two rotation periods are required to reach a quasi-stationary state. The application of the obtained results to the evolution of real tropical cyclones is discussed.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"22 1","pages":"185 - 205"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Angular momentum transfer in direct numerical simulations of a laboratory model of a tropical cyclone\",\"authors\":\"A. Evgrafova, A. Sukhanovskii\",\"doi\":\"10.1080/03091929.2022.2066659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Numerical simulations of a laboratory model of a tropical cyclone are carried out for different rotation rates. Particular attention is paid to the non-stationary stage of intensive cyclonic vortex formation. The transfer of angular momentum plays a key role in the formation of cyclonic and anticyclonic flows; therefore, a detailed analysis of the redistribution and variation of angular momentum is given. The time evolution of angular momentum fluxes and total angular momentum strongly depend on the rotation rate. It is shown that intensive cyclonic motion with velocity exceeding initial values substantially (ten or more times) is a result of accumulation in the centre of a small fraction of global angular momentum of a fluid layer (from 0.25% at fast rotation to 2% at slow rotation). The integral angular momentum of the anticyclonic flow is significantly larger than that of the cyclonic flow, mainly because of the relatively large fluid volume of the anticyclonic flow. Another important result is that the rotating fluid layer very quickly adapts to new boundary conditions (heating and cooling). Approximately two rotation periods are required to reach a quasi-stationary state. The application of the obtained results to the evolution of real tropical cyclones is discussed.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"22 1\",\"pages\":\"185 - 205\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2022.2066659\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2022.2066659","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Angular momentum transfer in direct numerical simulations of a laboratory model of a tropical cyclone
ABSTRACT Numerical simulations of a laboratory model of a tropical cyclone are carried out for different rotation rates. Particular attention is paid to the non-stationary stage of intensive cyclonic vortex formation. The transfer of angular momentum plays a key role in the formation of cyclonic and anticyclonic flows; therefore, a detailed analysis of the redistribution and variation of angular momentum is given. The time evolution of angular momentum fluxes and total angular momentum strongly depend on the rotation rate. It is shown that intensive cyclonic motion with velocity exceeding initial values substantially (ten or more times) is a result of accumulation in the centre of a small fraction of global angular momentum of a fluid layer (from 0.25% at fast rotation to 2% at slow rotation). The integral angular momentum of the anticyclonic flow is significantly larger than that of the cyclonic flow, mainly because of the relatively large fluid volume of the anticyclonic flow. Another important result is that the rotating fluid layer very quickly adapts to new boundary conditions (heating and cooling). Approximately two rotation periods are required to reach a quasi-stationary state. The application of the obtained results to the evolution of real tropical cyclones is discussed.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.