B. Albertazzi, P. Mabey, T. Michel, G. Rigon, J. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, M. Koenig
{"title":"触发恒星形成:由泰勒-谢多夫冲击波诱导的泡沫球实验压缩","authors":"B. Albertazzi, P. Mabey, T. Michel, G. Rigon, J. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, M. Koenig","doi":"10.1063/5.0068689","DOIUrl":null,"url":null,"abstract":"The interaction between a molecular cloud and an external agent (e.g., a supernova remnant, plasma jet, radiation, or another cloud) is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy. This process leads to fragmentation of the cloud and to its subsequent compression and can, eventually, initiate the gravitational collapse of a stable molecular cloud. It is, however, difficult to study such systems in detail using conventional techniques (numerical simulations and astronomical observations), since complex interactions of flows occur. In this paper, we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves, as an analog of supernova remnants interacting with a molecular cloud. The formation of a compression wave is observed in the foam ball, indicating the importance of such experiments for understanding how star formation is triggered by external agents.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves\",\"authors\":\"B. Albertazzi, P. Mabey, T. Michel, G. Rigon, J. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, M. Koenig\",\"doi\":\"10.1063/5.0068689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between a molecular cloud and an external agent (e.g., a supernova remnant, plasma jet, radiation, or another cloud) is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy. This process leads to fragmentation of the cloud and to its subsequent compression and can, eventually, initiate the gravitational collapse of a stable molecular cloud. It is, however, difficult to study such systems in detail using conventional techniques (numerical simulations and astronomical observations), since complex interactions of flows occur. In this paper, we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves, as an analog of supernova remnants interacting with a molecular cloud. The formation of a compression wave is observed in the foam ball, indicating the importance of such experiments for understanding how star formation is triggered by external agents.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0068689\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0068689","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves
The interaction between a molecular cloud and an external agent (e.g., a supernova remnant, plasma jet, radiation, or another cloud) is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy. This process leads to fragmentation of the cloud and to its subsequent compression and can, eventually, initiate the gravitational collapse of a stable molecular cloud. It is, however, difficult to study such systems in detail using conventional techniques (numerical simulations and astronomical observations), since complex interactions of flows occur. In this paper, we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves, as an analog of supernova remnants interacting with a molecular cloud. The formation of a compression wave is observed in the foam ball, indicating the importance of such experiments for understanding how star formation is triggered by external agents.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.