建立反映多孔弹性体材料有效力学性能的自适应有限元模型

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED Journal of Cellular Plastics Pub Date : 2022-12-24 DOI:10.1177/0021955X221147830
Aliakbar Nazari, M. Khanzadeh-Moradllo
{"title":"建立反映多孔弹性体材料有效力学性能的自适应有限元模型","authors":"Aliakbar Nazari, M. Khanzadeh-Moradllo","doi":"10.1177/0021955X221147830","DOIUrl":null,"url":null,"abstract":"Simulation of the microstructure of materials is not usually an efficient approach to estimate the mechanical response in the macro-scale porous components. This paper establishes an adaptive numerical model which reflects the effective mechanical properties of the elastomeric foam materials in the macro-scale, based on the material response in local points. The proposed adaptive model is capable of characterizing the dominant state of stress at each section point and assigning the corresponding mechanical properties from a developed material library. This material library can propose different stress-strain responses of the foam material based on mechanical characterization experiments and using the best-fit energy functions. The material of study is an elastomeric foam with a blend of Polyethylene/Ethylene-vinyl acetate (PE-EVA). The efficiency and performance of the adaptive model were examined using two practical case studies, in which the material was exposed to multiaxial stress conditions (a foam beam and a composite sandwich beam with a foam core under a concentrated loading). The adaptive model accurately predicts the dominant response of the foam beam and composite sandwich beam under flexural loading conditions. However, the uniaxial hyperelastic material models, calibrated by the pure tensile or compressive response of the foam material, dramatically overestimate or underestimate the experimental results.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"27 1","pages":"3 - 27"},"PeriodicalIF":3.2000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an adaptive FE model to reflect the effective mechanical properties in porous elastomeric materials\",\"authors\":\"Aliakbar Nazari, M. Khanzadeh-Moradllo\",\"doi\":\"10.1177/0021955X221147830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation of the microstructure of materials is not usually an efficient approach to estimate the mechanical response in the macro-scale porous components. This paper establishes an adaptive numerical model which reflects the effective mechanical properties of the elastomeric foam materials in the macro-scale, based on the material response in local points. The proposed adaptive model is capable of characterizing the dominant state of stress at each section point and assigning the corresponding mechanical properties from a developed material library. This material library can propose different stress-strain responses of the foam material based on mechanical characterization experiments and using the best-fit energy functions. The material of study is an elastomeric foam with a blend of Polyethylene/Ethylene-vinyl acetate (PE-EVA). The efficiency and performance of the adaptive model were examined using two practical case studies, in which the material was exposed to multiaxial stress conditions (a foam beam and a composite sandwich beam with a foam core under a concentrated loading). The adaptive model accurately predicts the dominant response of the foam beam and composite sandwich beam under flexural loading conditions. However, the uniaxial hyperelastic material models, calibrated by the pure tensile or compressive response of the foam material, dramatically overestimate or underestimate the experimental results.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"27 1\",\"pages\":\"3 - 27\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955X221147830\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X221147830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

材料微观结构的模拟通常不是估计宏观多孔构件力学响应的有效方法。基于材料在局部点的响应,建立了在宏观尺度上反映弹性泡沫材料有效力学性能的自适应数值模型。提出的自适应模型能够表征每个截面点的应力主导状态,并从开发的材料库中分配相应的力学性能。该材料库可以根据力学表征实验和最优拟合的能量函数来提出泡沫材料的不同应力应变响应。研究的材料是一种聚乙烯/乙烯-醋酸乙烯(PE-EVA)混合的弹性体泡沫。通过两个实际案例研究来检验自适应模型的效率和性能,其中材料暴露于多轴应力条件下(泡沫梁和集中载荷下具有泡沫芯的复合夹层梁)。该自适应模型准确地预测了泡沫梁和复合夹层梁在弯曲荷载条件下的主导响应。然而,单轴超弹性材料模型,由泡沫材料的纯拉伸或压缩响应校准,显着高估或低估了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing an adaptive FE model to reflect the effective mechanical properties in porous elastomeric materials
Simulation of the microstructure of materials is not usually an efficient approach to estimate the mechanical response in the macro-scale porous components. This paper establishes an adaptive numerical model which reflects the effective mechanical properties of the elastomeric foam materials in the macro-scale, based on the material response in local points. The proposed adaptive model is capable of characterizing the dominant state of stress at each section point and assigning the corresponding mechanical properties from a developed material library. This material library can propose different stress-strain responses of the foam material based on mechanical characterization experiments and using the best-fit energy functions. The material of study is an elastomeric foam with a blend of Polyethylene/Ethylene-vinyl acetate (PE-EVA). The efficiency and performance of the adaptive model were examined using two practical case studies, in which the material was exposed to multiaxial stress conditions (a foam beam and a composite sandwich beam with a foam core under a concentrated loading). The adaptive model accurately predicts the dominant response of the foam beam and composite sandwich beam under flexural loading conditions. However, the uniaxial hyperelastic material models, calibrated by the pure tensile or compressive response of the foam material, dramatically overestimate or underestimate the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
期刊最新文献
I-WP geometry structural assessment: A theoretical, experimental, and numerical analysis Foam density measurement using a 3D scanner Effect of temperature on the mechanical behavior of pvc foams Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1