SEG-VoxelNet用于RGB和LiDAR数据的3D车辆检测

Jian Dou, Jianru Xue, Jianwu Fang
{"title":"SEG-VoxelNet用于RGB和LiDAR数据的3D车辆检测","authors":"Jian Dou, Jianru Xue, Jianwu Fang","doi":"10.1109/ICRA.2019.8793492","DOIUrl":null,"url":null,"abstract":"This paper proposes a SEG-VoxelNet that takes RGB images and LiDAR point clouds as inputs for accurately detecting 3D vehicles in autonomous driving scenarios, which for the first time introduces semantic segmentation technique to assist the 3D LiDAR point cloud based detection. Specifically, SEG-VoxelNet is composed of two sub-networks: an image semantic segmentation network (SEG-Net) and an improved-VoxelNet. The SEG-Net generates the semantic segmentation map which represents the probability of the category for each pixel. The improved-VoxelNet is capable of effectively fusing point cloud data with image semantic feature and generating accurate 3D bounding boxes of vehicles. Experiments on the KITTI 3D vehicle detection benchmark show that our approach outperforms the methods of state-of-the-art.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"69 1","pages":"4362-4368"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"SEG-VoxelNet for 3D Vehicle Detection from RGB and LiDAR Data\",\"authors\":\"Jian Dou, Jianru Xue, Jianwu Fang\",\"doi\":\"10.1109/ICRA.2019.8793492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a SEG-VoxelNet that takes RGB images and LiDAR point clouds as inputs for accurately detecting 3D vehicles in autonomous driving scenarios, which for the first time introduces semantic segmentation technique to assist the 3D LiDAR point cloud based detection. Specifically, SEG-VoxelNet is composed of two sub-networks: an image semantic segmentation network (SEG-Net) and an improved-VoxelNet. The SEG-Net generates the semantic segmentation map which represents the probability of the category for each pixel. The improved-VoxelNet is capable of effectively fusing point cloud data with image semantic feature and generating accurate 3D bounding boxes of vehicles. Experiments on the KITTI 3D vehicle detection benchmark show that our approach outperforms the methods of state-of-the-art.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"69 1\",\"pages\":\"4362-4368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8793492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种以RGB图像和LiDAR点云为输入的SEG-VoxelNet,用于自动驾驶场景下的3D车辆精确检测,首次引入语义分割技术辅助基于3D LiDAR点云的检测。具体来说,SEG-VoxelNet由两个子网络组成:图像语义分割网络(SEG-Net)和改进的voxelnet。SEG-Net生成表示每个像素的类别概率的语义分割图。改进后的- voxelnet能够有效地将点云数据与图像语义特征融合,生成精确的车辆三维边界框。在KITTI三维车辆检测基准上的实验表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEG-VoxelNet for 3D Vehicle Detection from RGB and LiDAR Data
This paper proposes a SEG-VoxelNet that takes RGB images and LiDAR point clouds as inputs for accurately detecting 3D vehicles in autonomous driving scenarios, which for the first time introduces semantic segmentation technique to assist the 3D LiDAR point cloud based detection. Specifically, SEG-VoxelNet is composed of two sub-networks: an image semantic segmentation network (SEG-Net) and an improved-VoxelNet. The SEG-Net generates the semantic segmentation map which represents the probability of the category for each pixel. The improved-VoxelNet is capable of effectively fusing point cloud data with image semantic feature and generating accurate 3D bounding boxes of vehicles. Experiments on the KITTI 3D vehicle detection benchmark show that our approach outperforms the methods of state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1