{"title":"镍基合金热挤压管材制造工艺的改进","authors":"Y. Kosmatskiy, D. Lysov, N. Fokin, V. Nikolenko","doi":"10.18280/acsm.440201","DOIUrl":null,"url":null,"abstract":"Received: 18 December 2019 Accepted: 21 February 2020 The paper shows the reasons for the growing demand for pipes made of materials with special properties, which include Ni-base alloy CrNi60WoTi. The article is dedicated to results of complex research of opportunity to improve outside surface quality of Ni-base alloy hot extruded pipe. The paper presents analysis of scientific and technical information to determinate the characteristic features of deformation of Ni-based alloys. In work presents the results of plastometric research of samples of metal from an alloy CrNi60WoTi, which made it possible to receive data of value of deformation resistance. According to the results of plastometric tests at the Gleeble 3800 thermo-mechanical process simulator using the module Hydrawedge, metal flow curves were constructed. Using the selected dependence in the work, an approximation of the experimental data is shown based on this information, in the article presents results of calculation technological parameters of pipe extrusion process. This information was used on the factory to product of pilot industrial batch of pipes with an improved quality of outside surface that meets the requirements of Technical conditions (TC) 14-3R-85 without turning the outer surface.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"71 1","pages":"79-84"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving of Manufacturing of Hot-Extruded Pipes from Ni-Based Alloys\",\"authors\":\"Y. Kosmatskiy, D. Lysov, N. Fokin, V. Nikolenko\",\"doi\":\"10.18280/acsm.440201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 18 December 2019 Accepted: 21 February 2020 The paper shows the reasons for the growing demand for pipes made of materials with special properties, which include Ni-base alloy CrNi60WoTi. The article is dedicated to results of complex research of opportunity to improve outside surface quality of Ni-base alloy hot extruded pipe. The paper presents analysis of scientific and technical information to determinate the characteristic features of deformation of Ni-based alloys. In work presents the results of plastometric research of samples of metal from an alloy CrNi60WoTi, which made it possible to receive data of value of deformation resistance. According to the results of plastometric tests at the Gleeble 3800 thermo-mechanical process simulator using the module Hydrawedge, metal flow curves were constructed. Using the selected dependence in the work, an approximation of the experimental data is shown based on this information, in the article presents results of calculation technological parameters of pipe extrusion process. This information was used on the factory to product of pilot industrial batch of pipes with an improved quality of outside surface that meets the requirements of Technical conditions (TC) 14-3R-85 without turning the outer surface.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"71 1\",\"pages\":\"79-84\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving of Manufacturing of Hot-Extruded Pipes from Ni-Based Alloys
Received: 18 December 2019 Accepted: 21 February 2020 The paper shows the reasons for the growing demand for pipes made of materials with special properties, which include Ni-base alloy CrNi60WoTi. The article is dedicated to results of complex research of opportunity to improve outside surface quality of Ni-base alloy hot extruded pipe. The paper presents analysis of scientific and technical information to determinate the characteristic features of deformation of Ni-based alloys. In work presents the results of plastometric research of samples of metal from an alloy CrNi60WoTi, which made it possible to receive data of value of deformation resistance. According to the results of plastometric tests at the Gleeble 3800 thermo-mechanical process simulator using the module Hydrawedge, metal flow curves were constructed. Using the selected dependence in the work, an approximation of the experimental data is shown based on this information, in the article presents results of calculation technological parameters of pipe extrusion process. This information was used on the factory to product of pilot industrial batch of pipes with an improved quality of outside surface that meets the requirements of Technical conditions (TC) 14-3R-85 without turning the outer surface.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.