复杂api的基于组件的合成

Yu Feng, R. Martins, Yuepeng Wang, Işıl Dillig, T. Reps
{"title":"复杂api的基于组件的合成","authors":"Yu Feng, R. Martins, Yuepeng Wang, Işıl Dillig, T. Reps","doi":"10.1145/3009837.3009851","DOIUrl":null,"url":null,"abstract":"Component-based approaches to program synthesis assemble programs from a database of existing components, such as methods provided by an API. In this paper, we present a novel type-directed algorithm for component-based synthesis. The key novelty of our approach is the use of a compact Petri-net representation to model relationships between methods in an API. Given a target method signature S, our approach performs reachability analysis on the underlying Petri-net model to identify sequences of method calls that could be used to synthesize an implementation of S. The programs synthesized by our algorithm are guaranteed to type check and pass all test cases provided by the user. We have implemented this approach in a tool called SyPet, and used it to successfully synthesize real-world programming tasks extracted from on-line forums and existing code repositories. We also compare SyPet with two state-of-the-art synthesis tools, namely InSynth and CodeHint, and demonstrate that SyPet can synthesize more programs in less time. Finally, we compare our approach with an alternative solution based on hypergraphs and demonstrate its advantages.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Component-based synthesis for complex APIs\",\"authors\":\"Yu Feng, R. Martins, Yuepeng Wang, Işıl Dillig, T. Reps\",\"doi\":\"10.1145/3009837.3009851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Component-based approaches to program synthesis assemble programs from a database of existing components, such as methods provided by an API. In this paper, we present a novel type-directed algorithm for component-based synthesis. The key novelty of our approach is the use of a compact Petri-net representation to model relationships between methods in an API. Given a target method signature S, our approach performs reachability analysis on the underlying Petri-net model to identify sequences of method calls that could be used to synthesize an implementation of S. The programs synthesized by our algorithm are guaranteed to type check and pass all test cases provided by the user. We have implemented this approach in a tool called SyPet, and used it to successfully synthesize real-world programming tasks extracted from on-line forums and existing code repositories. We also compare SyPet with two state-of-the-art synthesis tools, namely InSynth and CodeHint, and demonstrate that SyPet can synthesize more programs in less time. Finally, we compare our approach with an alternative solution based on hypergraphs and demonstrate its advantages.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

基于组件的程序合成方法从现有组件(如API提供的方法)的数据库中组装程序。在本文中,我们提出了一种新的面向类型的基于组件的合成算法。我们的方法的关键新颖之处在于使用紧凑的Petri-net表示来为API中方法之间的关系建模。给定目标方法签名S,我们的方法在底层Petri-net模型上执行可达性分析,以识别可用于合成S实现的方法调用序列。通过我们的算法合成的程序保证类型检查并通过用户提供的所有测试用例。我们已经在一个名为SyPet的工具中实现了这种方法,并使用它成功地合成了从在线论坛和现有代码库中提取的实际编程任务。我们还将SyPet与两种最先进的合成工具InSynth和CodeHint进行了比较,并证明SyPet可以在更短的时间内合成更多的程序。最后,我们将我们的方法与基于超图的替代解决方案进行了比较,并展示了其优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Component-based synthesis for complex APIs
Component-based approaches to program synthesis assemble programs from a database of existing components, such as methods provided by an API. In this paper, we present a novel type-directed algorithm for component-based synthesis. The key novelty of our approach is the use of a compact Petri-net representation to model relationships between methods in an API. Given a target method signature S, our approach performs reachability analysis on the underlying Petri-net model to identify sequences of method calls that could be used to synthesize an implementation of S. The programs synthesized by our algorithm are guaranteed to type check and pass all test cases provided by the user. We have implemented this approach in a tool called SyPet, and used it to successfully synthesize real-world programming tasks extracted from on-line forums and existing code repositories. We also compare SyPet with two state-of-the-art synthesis tools, namely InSynth and CodeHint, and demonstrate that SyPet can synthesize more programs in less time. Finally, we compare our approach with an alternative solution based on hypergraphs and demonstrate its advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gradual refinement types A semantic account of metric preservation A posteriori environment analysis with Pushdown Delta CFA Type systems as macros Complexity verification using guided theorem enumeration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1