电池组多模式有源电池均衡架构及均衡策略

Swaminathan Narayanaswamy, Sangyoung Park, S. Steinhorst, S. Chakraborty
{"title":"电池组多模式有源电池均衡架构及均衡策略","authors":"Swaminathan Narayanaswamy, Sangyoung Park, S. Steinhorst, S. Chakraborty","doi":"10.1145/3218603.3218607","DOIUrl":null,"url":null,"abstract":"Active cell balancing is the process of improving the usable capacity of a series-connected Lithium-Ion (Li-Ion) battery pack by redistributing the charge levels of individual cells. Depending upon the State-of-Charge (SoC) distribution of the individual cells in the pack, an appropriate charge transfer pattern (cell-to-cell, cell-to-module, module-to-cell or module-to-module) has to be selected for improving the usable energy of the battery pack. However, existing active cell balancing circuits are only capable of performing limited number of charge transfer patterns and, therefore, have a reduced energy efficiency for different types of SoC distribution. In this paper, we propose a modular, multi-pattern active cell balancing architecture that is capable of performing multiple types of charge transfer patterns (cell-to-cell, cell-to-module, module-to-cell and module-to-module) with a reduced number of hardware components and control signals compared to existing solutions. We derive a closed-form, analytical model of our proposed balancing architecture with which we profile the efficiency of the individual charge transfer patterns enabled by our architecture. Using the profiling analysis, we propose a hybrid charge equalization strategy that automatically selects the most energy-efficient charge transfer pattern depending upon the SoC distribution of the battery pack and the characteristics of our proposed balancing architecture. Case studies show that our proposed balancing architecture and hybrid charge equalization strategy provide up to a maximum of 46.83% improvement in energy efficiency compared to existing solutions.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-Pattern Active Cell Balancing Architecture and Equalization Strategy for Battery Packs\",\"authors\":\"Swaminathan Narayanaswamy, Sangyoung Park, S. Steinhorst, S. Chakraborty\",\"doi\":\"10.1145/3218603.3218607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active cell balancing is the process of improving the usable capacity of a series-connected Lithium-Ion (Li-Ion) battery pack by redistributing the charge levels of individual cells. Depending upon the State-of-Charge (SoC) distribution of the individual cells in the pack, an appropriate charge transfer pattern (cell-to-cell, cell-to-module, module-to-cell or module-to-module) has to be selected for improving the usable energy of the battery pack. However, existing active cell balancing circuits are only capable of performing limited number of charge transfer patterns and, therefore, have a reduced energy efficiency for different types of SoC distribution. In this paper, we propose a modular, multi-pattern active cell balancing architecture that is capable of performing multiple types of charge transfer patterns (cell-to-cell, cell-to-module, module-to-cell and module-to-module) with a reduced number of hardware components and control signals compared to existing solutions. We derive a closed-form, analytical model of our proposed balancing architecture with which we profile the efficiency of the individual charge transfer patterns enabled by our architecture. Using the profiling analysis, we propose a hybrid charge equalization strategy that automatically selects the most energy-efficient charge transfer pattern depending upon the SoC distribution of the battery pack and the characteristics of our proposed balancing architecture. Case studies show that our proposed balancing architecture and hybrid charge equalization strategy provide up to a maximum of 46.83% improvement in energy efficiency compared to existing solutions.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

主动电池平衡是通过重新分配单个电池的充电水平来提高串联锂离子电池组的可用容量的过程。根据电池组中单个电池的荷电状态(SoC)分布,必须选择适当的电荷转移模式(电池到电池、电池到模块、模块到电池或模块到模块),以提高电池组的可用能量。然而,现有的有源电池平衡电路只能执行有限数量的电荷转移模式,因此,对于不同类型的SoC分布,能量效率降低。在本文中,我们提出了一种模块化的多模式有源电池平衡架构,与现有解决方案相比,该架构能够执行多种类型的电荷转移模式(细胞到细胞,细胞到模块,模块到细胞和模块到模块),减少了硬件组件和控制信号的数量。我们推导了我们提出的平衡架构的一个封闭形式的分析模型,我们用它来描述我们的架构所启用的单个电荷转移模式的效率。通过分析,我们提出了一种混合充电均衡策略,该策略根据电池组的SoC分布和我们提出的平衡架构的特性自动选择最节能的电荷转移模式。案例研究表明,与现有解决方案相比,我们提出的平衡架构和混合充电均衡策略可提供高达46.83%的能源效率改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Pattern Active Cell Balancing Architecture and Equalization Strategy for Battery Packs
Active cell balancing is the process of improving the usable capacity of a series-connected Lithium-Ion (Li-Ion) battery pack by redistributing the charge levels of individual cells. Depending upon the State-of-Charge (SoC) distribution of the individual cells in the pack, an appropriate charge transfer pattern (cell-to-cell, cell-to-module, module-to-cell or module-to-module) has to be selected for improving the usable energy of the battery pack. However, existing active cell balancing circuits are only capable of performing limited number of charge transfer patterns and, therefore, have a reduced energy efficiency for different types of SoC distribution. In this paper, we propose a modular, multi-pattern active cell balancing architecture that is capable of performing multiple types of charge transfer patterns (cell-to-cell, cell-to-module, module-to-cell and module-to-module) with a reduced number of hardware components and control signals compared to existing solutions. We derive a closed-form, analytical model of our proposed balancing architecture with which we profile the efficiency of the individual charge transfer patterns enabled by our architecture. Using the profiling analysis, we propose a hybrid charge equalization strategy that automatically selects the most energy-efficient charge transfer pattern depending upon the SoC distribution of the battery pack and the characteristics of our proposed balancing architecture. Case studies show that our proposed balancing architecture and hybrid charge equalization strategy provide up to a maximum of 46.83% improvement in energy efficiency compared to existing solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adiabatic and Clock-Powered Circuits Power Macro-Models for High-Level Power Estimation Stand-By Power Reduction for SRAM Memories Leakage in CMOS Nanometric Technologies Evolution of Deep Submicron Bulk and SOI Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1