智利北部Colpitas-Taapaca火山-热液系统地球化学测量

M. Inostroza, F. Tassi, J. Sepúlveda, F. Capecchiacci, A. Rizzo, F. Aguilera
{"title":"智利北部Colpitas-Taapaca火山-热液系统地球化学测量","authors":"M. Inostroza, F. Tassi, J. Sepúlveda, F. Capecchiacci, A. Rizzo, F. Aguilera","doi":"10.3301/ijg.2020.09","DOIUrl":null,"url":null,"abstract":"This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data of fluid discharges from Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na +-Cl -composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO42- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S- rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO42- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3- composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18O-H2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and water- rock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/ 3He ratios, combined with d 13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.","PeriodicalId":55341,"journal":{"name":"Bollettino Della Societa Geologica Italiana","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geochemical survey of the Colpitas-Taapaca volcanic-hydrothermal system, northern Chile\",\"authors\":\"M. Inostroza, F. Tassi, J. Sepúlveda, F. Capecchiacci, A. Rizzo, F. Aguilera\",\"doi\":\"10.3301/ijg.2020.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data of fluid discharges from Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na +-Cl -composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO42- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S- rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO42- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3- composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18O-H2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and water- rock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/ 3He ratios, combined with d 13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.\",\"PeriodicalId\":55341,\"journal\":{\"name\":\"Bollettino Della Societa Geologica Italiana\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bollettino Della Societa Geologica Italiana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3301/ijg.2020.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino Della Societa Geologica Italiana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3301/ijg.2020.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过对靠近Taapaca火山杂岩的Colpitas-Taapaca火山热液系统流体排放的化学和同位素(δ13C-CO2、δ13C-CH4、3He、4He、20Ne、40Ar、36Ar、δ18O和δD)数据的研究,探讨了流体源的物理化学条件,并对研究区地热潜力进行了初步评价。该地区的科尔皮塔斯温泉(56°C以下)和部分冷泉(≤18°C)具有Na+- cl -组成和总溶解固体(TDS)值(6059 ~ 19118 mg/L)。Putre springs还显示Na +-Cl组成,TDS值高达7,887 mg/L,出口温度为21至31°C。Colpitas冷泉具有Ca2+- so42 -组成和相对较低的TDS值(≤1350 mg/L),可能是浅水与上升的富H2S热液气体相互作用产生的。这一过程可能也控制了Jurase温泉的化学性质,该温泉具有研究区域最高的出口温度(高达68°C), Ca2+- so42 -组成和TDS值≤2355 mg/L。最终,Las Cuevas泉水的温度高达36°C, Na+- hco3 -组成和低TDS值(≤1067 mg/L),这些都是浅层含水层泉水的典型特征。δ18O-H2O和δD-H2O值表明所有的水以大气成因为主。Colpitas和Putre热水显示的18O和D的富集可能是由于蒸汽损失和水-岩相互作用,掩盖了岩浆脱气可能直接贡献的蒸汽。Colpitas冒泡池气体排放以CO2为主,CH4、H2S和H2浓度显著。Colpitas气体的Rc/Ra值(高达2.04)表明岩浆对地幔He的贡献显著,而高CO2/ 3He比值,结合d 13C-CO2值(相对于PDB)在-7.66 ~ -5.63‰之间,表明地壳CO2主要来源于灰岩。根据来自Colpitas的水和气体组成估计温度高达215°C。据估计,Putre热水的温度更高(240°C),尽管这些水以及来自Jurase和Las Cuevas的水还太不成熟,无法可靠地应用地热测量技术。根据理论储层温度和实测Cl总输出,估计Colpitas热区释放的热能可达13.9 Mw。这些结果表明存在一个有希望的热源,可能与Taapaca火山复合体有关,并鼓励基于地球物理和地球化学结合方法的未来研究的发展,以便为整个地区的地热潜力提供可靠的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geochemical survey of the Colpitas-Taapaca volcanic-hydrothermal system, northern Chile
This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data of fluid discharges from Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na +-Cl -composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO42- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S- rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO42- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3- composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18O-H2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and water- rock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/ 3He ratios, combined with d 13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geochemical approach to the genesis of the Buyukkizilcik (Afsin) barite deposit, SE Turkey Forward Modelling of Bouguer Anomalies along a transect of the Southern Apennines and the Southern Tyrrhenian Sea (Italy) Hybrid event bed distribution in a mixed siliciclastic-calcareous turbidite succession: a cross-current perspective from the Bordighera Sandstone, Ligurian Alps, NW Italy Late Cretaceous black shales from the Tuscan Sedimentary Succession (northern Tuscany, Italy): geochemistry and ore mineralogy Facies, composition and provenance of the Agnone Flysch in the context of the early Messinian evolution of the southern Apennine foredeep (Molise, Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1