使用机器学习模型分析流行病学数据

Harshita Barapatre, Jatin Jangir, Sudhanshu Bajpai, Bhavesh Chawla, Gunjan Keswani
{"title":"使用机器学习模型分析流行病学数据","authors":"Harshita Barapatre, Jatin Jangir, Sudhanshu Bajpai, Bhavesh Chawla, Gunjan Keswani","doi":"10.47164/ijngc.v14i1.1014","DOIUrl":null,"url":null,"abstract":"Epidemiological data is the data obtained based on disease, injury or environmental hazard occurrence using the previous data on the epidemic situation. We can use it for analysis and find the trends and patterns. We can use different machine learning models to create a platform that can be used for different time series data. We can rely on the properties of time series data like trends and seasonality and use this for future prediction. Acquiring the dataset is the first step in data preprocessing in machine learning. We have collected the dataset from ourWorldIndia website which is a real-life dataset of covid-19. This paper presents the idea of a dedicated machine learning model to forecast the future using epidemiological data. We have taken a data-set of covid-19 for the prediction of the number of daily cases infected by the coronavirus. Our machine learning model can be applied on the dataset of any country in the world. We have applied it on the dataset of India in the experimentation. Our goal behind this research paper is to give the ML model which can be easily used on any epidemiological data for prediction by analysing the seasonality.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"57 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytics of Epidemiological Data using Machine Learning Models\",\"authors\":\"Harshita Barapatre, Jatin Jangir, Sudhanshu Bajpai, Bhavesh Chawla, Gunjan Keswani\",\"doi\":\"10.47164/ijngc.v14i1.1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epidemiological data is the data obtained based on disease, injury or environmental hazard occurrence using the previous data on the epidemic situation. We can use it for analysis and find the trends and patterns. We can use different machine learning models to create a platform that can be used for different time series data. We can rely on the properties of time series data like trends and seasonality and use this for future prediction. Acquiring the dataset is the first step in data preprocessing in machine learning. We have collected the dataset from ourWorldIndia website which is a real-life dataset of covid-19. This paper presents the idea of a dedicated machine learning model to forecast the future using epidemiological data. We have taken a data-set of covid-19 for the prediction of the number of daily cases infected by the coronavirus. Our machine learning model can be applied on the dataset of any country in the world. We have applied it on the dataset of India in the experimentation. Our goal behind this research paper is to give the ML model which can be easily used on any epidemiological data for prediction by analysing the seasonality.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i1.1014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流行病学数据是根据疾病、伤害或环境危害的发生情况,利用以前的疫情数据获得的数据。我们可以用它进行分析,找到趋势和模式。我们可以使用不同的机器学习模型来创建一个可以用于不同时间序列数据的平台。我们可以依靠时间序列数据的属性,如趋势和季节性,并将其用于未来预测。获取数据集是机器学习中数据预处理的第一步。我们从我们的世界印度网站收集了数据集,这是covid-19的真实数据集。本文提出了使用流行病学数据预测未来的专用机器学习模型的想法。我们使用covid-19数据集来预测每日感染冠状病毒的病例数。我们的机器学习模型可以应用于世界上任何国家的数据集。我们在实验中将其应用于印度的数据集。我们的研究论文的目的是通过分析季节性,给出可以很容易地用于任何流行病学数据预测的ML模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytics of Epidemiological Data using Machine Learning Models
Epidemiological data is the data obtained based on disease, injury or environmental hazard occurrence using the previous data on the epidemic situation. We can use it for analysis and find the trends and patterns. We can use different machine learning models to create a platform that can be used for different time series data. We can rely on the properties of time series data like trends and seasonality and use this for future prediction. Acquiring the dataset is the first step in data preprocessing in machine learning. We have collected the dataset from ourWorldIndia website which is a real-life dataset of covid-19. This paper presents the idea of a dedicated machine learning model to forecast the future using epidemiological data. We have taken a data-set of covid-19 for the prediction of the number of daily cases infected by the coronavirus. Our machine learning model can be applied on the dataset of any country in the world. We have applied it on the dataset of India in the experimentation. Our goal behind this research paper is to give the ML model which can be easily used on any epidemiological data for prediction by analysing the seasonality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1