{"title":"用于检测非正态聚类的贝叶斯层次混合模型应用于嘈杂的基因组和环境数据集","authors":"Huizi Zhang, Ben Swallow, Mayetri Gupta","doi":"10.1111/anzs.12370","DOIUrl":null,"url":null,"abstract":"<p>Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 2","pages":"313-337"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12370","citationCount":"1","resultStr":"{\"title\":\"Bayesian hierarchical mixture models for detecting non-normal clusters applied to noisy genomic and environmental datasets\",\"authors\":\"Huizi Zhang, Ben Swallow, Mayetri Gupta\",\"doi\":\"10.1111/anzs.12370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.</p>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"64 2\",\"pages\":\"313-337\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12370\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12370\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12370","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian hierarchical mixture models for detecting non-normal clusters applied to noisy genomic and environmental datasets
Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.