用于检测非正态聚类的贝叶斯层次混合模型应用于嘈杂的基因组和环境数据集

Pub Date : 2022-08-01 DOI:10.1111/anzs.12370
Huizi Zhang, Ben Swallow, Mayetri Gupta
{"title":"用于检测非正态聚类的贝叶斯层次混合模型应用于嘈杂的基因组和环境数据集","authors":"Huizi Zhang,&nbsp;Ben Swallow,&nbsp;Mayetri Gupta","doi":"10.1111/anzs.12370","DOIUrl":null,"url":null,"abstract":"<p>Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12370","citationCount":"1","resultStr":"{\"title\":\"Bayesian hierarchical mixture models for detecting non-normal clusters applied to noisy genomic and environmental datasets\",\"authors\":\"Huizi Zhang,&nbsp;Ben Swallow,&nbsp;Mayetri Gupta\",\"doi\":\"10.1111/anzs.12370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12370\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类发现具有共同特征的子组通常是对大型复杂数据集进行统计建模和分析的必要的第一步。尽管后续分析经常使用适合特定应用的复杂统计模型,但最流行的聚类方法要么是非参数的,要么基于高斯混合模型及其变体,这通常是出于计算效率的原因。数据中的某些特征,例如在现代科学数据集中常见的异常值或非椭球形簇形状的存在,往往导致这些方法无法准确地检测到簇成分。在本文中,我们提出了两种高效且稳健的贝叶斯聚类方法,旨在克服这些局限性——一种基于模型的“紧密”聚类方法,用于在异常值存在的情况下聚类点,以及一种基于分层拉普拉斯混合的方法,用于聚类重尾和其他非正常聚类组件——并说明它们在检测基因组学、成像和环境科学数据集中有意义的聚类方面的能力和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Bayesian hierarchical mixture models for detecting non-normal clusters applied to noisy genomic and environmental datasets

Clustering to find subgroups with common features is often a necessary first step in the statistical modelling and analysis of large and complex datasets. Although follow-up analyses often make use of complex statistical models that are appropriate for the specific application, most popular clustering approaches are either nonparametric, or based on Gaussian mixture models and their variants, often for reasons of computational efficiency. Certain characteristics in the data, such as the presence of outliers, or non-ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these methods to fail to detect the cluster components accurately. In this article, we present two efficient and robust Bayesian clustering approaches that seek to overcome these limitations—a model-based ‘tight’ clustering approach to cluster points in the presence of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed and otherwise non-normal cluster components—and illustrate their power and accuracy in detecting meaningful clusters in datasets from genomics, imaging and the environmental sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1