{"title":"高频分数阶高斯噪声的一步估计","authors":"A. Brouste, M. Soltane, I. Votsi","doi":"10.1051/PS/2020022","DOIUrl":null,"url":null,"abstract":"The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"96 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"One-step estimation for the fractional Gaussian noise at high-frequency\",\"authors\":\"A. Brouste, M. Soltane, I. Votsi\",\"doi\":\"10.1051/PS/2020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/PS/2020022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2020022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
One-step estimation for the fractional Gaussian noise at high-frequency
The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.