基于pareto方法的序列相关联合并行机双目标调度

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2021-08-30 DOI:10.1155/2021/6663375
Wichai Srisuruk, Kanchala Sudtachat, Paramate Horkaew
{"title":"基于pareto方法的序列相关联合并行机双目标调度","authors":"Wichai Srisuruk, Kanchala Sudtachat, Paramate Horkaew","doi":"10.1155/2021/6663375","DOIUrl":null,"url":null,"abstract":"Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biobjective Scheduling for Joint Parallel Machines with Sequence-Dependent Setup by Taking Pareto-Based Approach\",\"authors\":\"Wichai Srisuruk, Kanchala Sudtachat, Paramate Horkaew\",\"doi\":\"10.1155/2021/6663375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6663375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6663375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现代工厂一直在向准时生产模式发展。因此,优化资源调度对于最小化制造成本和产品交付延迟至关重要。因此,本文的重点是通过帕累托方法对多个不相关的并行机器进行调度。拟议的战略解决了额外的现实问题。特别地,还考虑了产品依赖性以及机器能力及其合格性方面的偶然性。提供一个作业列表,每个作业都有不同的资源工时容量,这种新的调度旨在最小化制造成本,同时保持机器利用率的平衡。为此,依次采用不同的计算智能算法,即自适应最近邻搜索和修改禁忌搜索,然后在小问题集和大问题集上对组合数学基线进行基准测试和验证。本文报道的实验是在MATLAB™软件上进行的。对这些算法得到的制造方案进行了全面的评价和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biobjective Scheduling for Joint Parallel Machines with Sequence-Dependent Setup by Taking Pareto-Based Approach
Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Setting Safe Operation Conditions for Acetyl Chloride Hydrolysis through Dynamic Modelling and Bifurcation Analysis Mathematical-Based CFD Modelling and Simulation of Mushroom Drying in Tray Dryer Evaluation of Electric Vehicle-Dependent Strategy in Addis Ababa, Ethiopia Transport System Two-Dimensional FEM Approach of Metabolic Effect on Thermoregulation in Human Dermal Parts During Walking and Marathon Progressive Collapse Resistance Mechanism of RC Frame Structure Considering Reinforcement Corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1