{"title":"基于pareto方法的序列相关联合并行机双目标调度","authors":"Wichai Srisuruk, Kanchala Sudtachat, Paramate Horkaew","doi":"10.1155/2021/6663375","DOIUrl":null,"url":null,"abstract":"Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biobjective Scheduling for Joint Parallel Machines with Sequence-Dependent Setup by Taking Pareto-Based Approach\",\"authors\":\"Wichai Srisuruk, Kanchala Sudtachat, Paramate Horkaew\",\"doi\":\"10.1155/2021/6663375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6663375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6663375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Biobjective Scheduling for Joint Parallel Machines with Sequence-Dependent Setup by Taking Pareto-Based Approach
Modern factories have been moving toward just-in-time manufacturing paradigm. Optimal resource scheduling is therefore essential to minimize manufacturing cost and product delivery delay. This paper therefore focuses on scheduling multiple unrelated parallel machines, via Pareto approach. With the proposed strategy, additional realistic concerns are addressed. Particularly, contingencies regarding product dependencies as well as machine capacity and its eligibility are also considered. Provided a jobs list, each with a distinct resource work hour capacity, this novel scheduling is aimed at minimizing manufacturing costs, while maintaining the balance of machine utilization. To this end, different computational intelligence algorithms, i.e., adaptive nearest neighbour search and modified tabu search, are employed in turn and then benchmarked and validated against combinatorial mathematical baseline, on both small and large problem sets. The experiments reported herein were made on MATLAB™ software. The resultant manufacturing plans obtained by these algorithms are thoroughly assessed and discussed.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.