{"title":"基于决策级融合的多波长数据自动探测火星沙尘暴","authors":"Keisuke Maeda, Takahiro Ogawa, M. Haseyama","doi":"10.2197/ipsjtcva.7.79","DOIUrl":null,"url":null,"abstract":"This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"51 7 1","pages":"79-83"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion\",\"authors\":\"Keisuke Maeda, Takahiro Ogawa, M. Haseyama\",\"doi\":\"10.2197/ipsjtcva.7.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"51 7 1\",\"pages\":\"79-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion
This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.