多核心加速LIBOR掉期组合定价

Jörg Lotze, P. Sutton, Hicham Lahlou
{"title":"多核心加速LIBOR掉期组合定价","authors":"Jörg Lotze, P. Sutton, Hicham Lahlou","doi":"10.1109/SC.Companion.2012.143","DOIUrl":null,"url":null,"abstract":"This paper describes the acceleration of a MonteCarlo algorithm for pricing a LIBOR swaption portfolio using multi-core CPUs and GPUs. Speedups of up to 305x are achieved on two Nvidia Tesla M2050 GPUs and up to 20.8x on two Intel Xeon E5620 CPUs, compared to a sequential CPU implementation. This performance is achieved by using the Xcelerit platform - writing sequential, high-level C++ code and adopting a simple dataflow programming model. It avoids the complexity involved when using low-level high-performance computing frameworks such as OpenMP, OpenCL, CUDA, or SIMD intrinsics. The paper provides an overview of the Xcelerit platform, details how high performance is achieved through various automatic optimisation and parallelisation techniques, and shows how the tool can be used to implement portable accelerated Monte-Carlo algorithms in finance. It illustrates the implementation of the Monte-Carlo LIBOR swaption portfolio pricer and gives performance results. A comparison of the Xcelerit platform implementation with an equivalent low-level CUDA version shows that the overhead introduced is less than 1.5% in all scenarios.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"30 1","pages":"1185-1192"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Many-Core Accelerated LIBOR Swaption Portfolio Pricing\",\"authors\":\"Jörg Lotze, P. Sutton, Hicham Lahlou\",\"doi\":\"10.1109/SC.Companion.2012.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the acceleration of a MonteCarlo algorithm for pricing a LIBOR swaption portfolio using multi-core CPUs and GPUs. Speedups of up to 305x are achieved on two Nvidia Tesla M2050 GPUs and up to 20.8x on two Intel Xeon E5620 CPUs, compared to a sequential CPU implementation. This performance is achieved by using the Xcelerit platform - writing sequential, high-level C++ code and adopting a simple dataflow programming model. It avoids the complexity involved when using low-level high-performance computing frameworks such as OpenMP, OpenCL, CUDA, or SIMD intrinsics. The paper provides an overview of the Xcelerit platform, details how high performance is achieved through various automatic optimisation and parallelisation techniques, and shows how the tool can be used to implement portable accelerated Monte-Carlo algorithms in finance. It illustrates the implementation of the Monte-Carlo LIBOR swaption portfolio pricer and gives performance results. A comparison of the Xcelerit platform implementation with an equivalent low-level CUDA version shows that the overhead introduced is less than 1.5% in all scenarios.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"30 1\",\"pages\":\"1185-1192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种基于多核cpu和gpu的LIBOR互换组合定价MonteCarlo算法的加速。与串行CPU实现相比,两个Nvidia Tesla M2050 gpu实现了高达305倍的加速,两个Intel至强E5620 CPU实现了高达20.8倍的加速。这种性能是通过使用Xcelerit平台实现的——编写顺序的高级c++代码,并采用简单的数据流编程模型。它避免了使用底层高性能计算框架(如OpenMP、OpenCL、CUDA或SIMD intrinsic)时所涉及的复杂性。本文概述了Xcelerit平台,详细介绍了如何通过各种自动优化和并行化技术实现高性能,并展示了如何使用该工具在金融领域实现便携式加速蒙特卡罗算法。举例说明了蒙特卡洛LIBOR掉期组合定价器的实现,并给出了性能结果。Xcelerit平台实现与同等低级CUDA版本的比较表明,在所有场景中引入的开销都小于1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Many-Core Accelerated LIBOR Swaption Portfolio Pricing
This paper describes the acceleration of a MonteCarlo algorithm for pricing a LIBOR swaption portfolio using multi-core CPUs and GPUs. Speedups of up to 305x are achieved on two Nvidia Tesla M2050 GPUs and up to 20.8x on two Intel Xeon E5620 CPUs, compared to a sequential CPU implementation. This performance is achieved by using the Xcelerit platform - writing sequential, high-level C++ code and adopting a simple dataflow programming model. It avoids the complexity involved when using low-level high-performance computing frameworks such as OpenMP, OpenCL, CUDA, or SIMD intrinsics. The paper provides an overview of the Xcelerit platform, details how high performance is achieved through various automatic optimisation and parallelisation techniques, and shows how the tool can be used to implement portable accelerated Monte-Carlo algorithms in finance. It illustrates the implementation of the Monte-Carlo LIBOR swaption portfolio pricer and gives performance results. A comparison of the Xcelerit platform implementation with an equivalent low-level CUDA version shows that the overhead introduced is less than 1.5% in all scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1