基于子空间局部密度估计的异常检测算法

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2019-07-01 DOI:10.4018/IJWSR.2019070103
Chunkai Zhang, Ao Yin
{"title":"基于子空间局部密度估计的异常检测算法","authors":"Chunkai Zhang, Ao Yin","doi":"10.4018/IJWSR.2019070103","DOIUrl":null,"url":null,"abstract":"In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"2 1","pages":"44-58"},"PeriodicalIF":0.8000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Anomaly Detection Algorithm Based on Subspace Local Density Estimation\",\"authors\":\"Chunkai Zhang, Ao Yin\",\"doi\":\"10.4018/IJWSR.2019070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"2 1\",\"pages\":\"44-58\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2019070103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2019070103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于子空间局部密度估计的异常检测算法。该算法的核心思想是构建多棵三叉树,从而实现子空间的构建和局部密度估计。每个三叉戟树(t树)是通过将3 sigma以外的数据划分为左子树或右子树,并将其余数据划分为中间子树来递归构建的。trident树中的每个节点记录落在该节点上的实例数量,因此每个trident树都可以用作局部密度估计器。每个实例的密度是所有三叉戟树评价实例密度的平均值,可以作为实例的异常分数。由于每棵三叉戟树都是按照3 σ原理构造的,所以在树高不太大的情况下,可以获得很好的异常检测结果。理论分析和实验结果表明,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection Algorithm Based on Subspace Local Density Estimation
In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1