{"title":"采用模式识别的自动粒度分析及沉降装置","authors":"D. Martins, Wesley Pacheco, V. Damin","doi":"10.1109/EEEIC.2018.8493655","DOIUrl":null,"url":null,"abstract":"This article describes the operation of an device for automatic particle size analysis and the of sedimentation using pattern recognition. The device performs measurement in 32 levels and for each level an electric voltage curve is generated; the combination of the 32 curves forms a data matrix that characterizes the soil sedimentation behavior. The matrix is then subjected to classification by pattern recognition by neural network perceptron of multiple layers; previously trained with reference samples. The neural network classifies the soil texture by identifying the probabilities of the sample being tested as one of the reference samples.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"11 4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device for Automatic Particle Size Analysis and the of Sedimentation Using Pattern Recognition\",\"authors\":\"D. Martins, Wesley Pacheco, V. Damin\",\"doi\":\"10.1109/EEEIC.2018.8493655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the operation of an device for automatic particle size analysis and the of sedimentation using pattern recognition. The device performs measurement in 32 levels and for each level an electric voltage curve is generated; the combination of the 32 curves forms a data matrix that characterizes the soil sedimentation behavior. The matrix is then subjected to classification by pattern recognition by neural network perceptron of multiple layers; previously trained with reference samples. The neural network classifies the soil texture by identifying the probabilities of the sample being tested as one of the reference samples.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"11 4 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8493655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8493655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用模式识别进行粒度自动分析和沉降的装置的操作。该装置在32个电平中进行测量,并为每个电平生成电压曲线;32条曲线的组合形成了表征土壤沉降行为的数据矩阵。然后通过多层神经网络感知器进行模式识别对矩阵进行分类;之前用参考样本训练。神经网络通过识别被测样本作为参考样本的概率来对土壤质地进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Device for Automatic Particle Size Analysis and the of Sedimentation Using Pattern Recognition
This article describes the operation of an device for automatic particle size analysis and the of sedimentation using pattern recognition. The device performs measurement in 32 levels and for each level an electric voltage curve is generated; the combination of the 32 curves forms a data matrix that characterizes the soil sedimentation behavior. The matrix is then subjected to classification by pattern recognition by neural network perceptron of multiple layers; previously trained with reference samples. The neural network classifies the soil texture by identifying the probabilities of the sample being tested as one of the reference samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future State Visualization in Power Grid Configurations of Modified SEPIC Converter with Switched Inductor Module (MSCsI) for Photovoltaic Application: Part-II Innovative Hybrid Energy Systems for Heading Towards NZEB Qualification for Existing Buildings Potential Use of Reservoirs for Mitigating Saline Intrusion in the Coastal Areas of Red River Delta Radiated Wideband IEMI: Coupling Model and Worst-Case Analysis for Smart Grid Wiring Harness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1