基因型数据操作中NoSQL数据库的相对可扩展性

Arthur Lorenzi, V. Schettino, Thiago Jesus Rodrigues Barbosa, P. F. Freitas, Pedro Gabriel Silva Guimarães, W. Arbex
{"title":"基因型数据操作中NoSQL数据库的相对可扩展性","authors":"Arthur Lorenzi, V. Schettino, Thiago Jesus Rodrigues Barbosa, P. F. Freitas, Pedro Gabriel Silva Guimarães, W. Arbex","doi":"10.22456/2175-2745.79334","DOIUrl":null,"url":null,"abstract":"Genotype data manipulation is one of the greatest challenges in bioinformatics and genomics mainly because of high dimensionality and unbalancing characteristics. These peculiarities explains why Relational Database Management Systems (RDBMSs), the \"de facto\" standard storage solution, have not been presented as the best tools for this kind of data. However, Big Data has been pushing the development of modern database systems that might be able to overcome RDBMSs deficiencies. In this context, we extended our previous works on the evaluation of relative performance among NoSQLs engines from different families, adapting the schema design in order to achieve better performance based on its conclusions, thus being able to store more SNP markers for each individual. Using Yahoo! Cloud Serving Benchmark (YCSB) benchmark framework, we assessed each database system over hypothetical SNP sequences. Results indicate that although Tarantool has the best overall throughput, MongoDB is less impacted by the increase of SNP markers per individual.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relative Scalability of NoSQL Databases for Genotype Data Manipulation\",\"authors\":\"Arthur Lorenzi, V. Schettino, Thiago Jesus Rodrigues Barbosa, P. F. Freitas, Pedro Gabriel Silva Guimarães, W. Arbex\",\"doi\":\"10.22456/2175-2745.79334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genotype data manipulation is one of the greatest challenges in bioinformatics and genomics mainly because of high dimensionality and unbalancing characteristics. These peculiarities explains why Relational Database Management Systems (RDBMSs), the \\\"de facto\\\" standard storage solution, have not been presented as the best tools for this kind of data. However, Big Data has been pushing the development of modern database systems that might be able to overcome RDBMSs deficiencies. In this context, we extended our previous works on the evaluation of relative performance among NoSQLs engines from different families, adapting the schema design in order to achieve better performance based on its conclusions, thus being able to store more SNP markers for each individual. Using Yahoo! Cloud Serving Benchmark (YCSB) benchmark framework, we assessed each database system over hypothetical SNP sequences. Results indicate that although Tarantool has the best overall throughput, MongoDB is less impacted by the increase of SNP markers per individual.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.79334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.79334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因型数据的高维性和不平衡性是生物信息学和基因组学研究面临的最大挑战之一。这些特性解释了为什么关系数据库管理系统(rdbms)——“事实上的”标准存储解决方案——没有作为这类数据的最佳工具出现。然而,大数据一直在推动现代数据库系统的发展,这些系统可能能够克服rdbms的缺陷。在这种情况下,我们扩展了之前关于不同家族nosql引擎之间相对性能评估的工作,根据结论调整模式设计以获得更好的性能,从而能够为每个个体存储更多的SNP标记。使用雅虎云服务基准(YCSB)基准框架,我们在假设的SNP序列上评估每个数据库系统。结果表明,尽管Tarantool具有最佳的总体吞吐量,但MongoDB受单个SNP标记增加的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relative Scalability of NoSQL Databases for Genotype Data Manipulation
Genotype data manipulation is one of the greatest challenges in bioinformatics and genomics mainly because of high dimensionality and unbalancing characteristics. These peculiarities explains why Relational Database Management Systems (RDBMSs), the "de facto" standard storage solution, have not been presented as the best tools for this kind of data. However, Big Data has been pushing the development of modern database systems that might be able to overcome RDBMSs deficiencies. In this context, we extended our previous works on the evaluation of relative performance among NoSQLs engines from different families, adapting the schema design in order to achieve better performance based on its conclusions, thus being able to store more SNP markers for each individual. Using Yahoo! Cloud Serving Benchmark (YCSB) benchmark framework, we assessed each database system over hypothetical SNP sequences. Results indicate that although Tarantool has the best overall throughput, MongoDB is less impacted by the increase of SNP markers per individual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Causal Effect Estimation of Emotional Labeling of Watched Videos Exploring Supervised Techniques for Automated Recognition of Intention Classes from Portuguese Free Texts on Agriculture Stochastic Models for Planning VLE Moodle Environments based on Containers and Virtual Machines A Review of Testbeds on SCADA Systems with Malware Analysis A Conceptual Model for Situating Purposes in Artificial Institutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1