基于GPU的加速光谱拉曼光谱处理方法

Imane Zouaneb, M. Belarbi, A. Chouarfia
{"title":"基于GPU的加速光谱拉曼光谱处理方法","authors":"Imane Zouaneb, M. Belarbi, A. Chouarfia","doi":"10.1109/ICEEE2.2018.8391362","DOIUrl":null,"url":null,"abstract":"Raman spectrometry is a technique that allows detecting chemical products through a number of representative peaks found in an image spectrum or numeric series of data. The Raman spectrum machine generates a CSV file or an image as a curve which is the result of the diagnosis product. The analysis of the spectrum peaks permits to detect the chemical origin of the concerned product. Scientists do this operation manually, which makes it hard and long in terms of time. Graphics Processing Units (GPUs) allow us to make the processing faster and more efficient, thanks to its multicore architecture. The aim of the present paper is to propose a new GPU based approach to automate the molecule detection operation using image-processing techniques with OpenCL parallel implementation. We propose two parallel solutions, which will be compared to each other. We apply the exploited approach to analyze ionic liquids and biomaterials samples.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"218 1","pages":"360-365"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based GPU approach to accelerate spectroscopy Raman spectrum processing\",\"authors\":\"Imane Zouaneb, M. Belarbi, A. Chouarfia\",\"doi\":\"10.1109/ICEEE2.2018.8391362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raman spectrometry is a technique that allows detecting chemical products through a number of representative peaks found in an image spectrum or numeric series of data. The Raman spectrum machine generates a CSV file or an image as a curve which is the result of the diagnosis product. The analysis of the spectrum peaks permits to detect the chemical origin of the concerned product. Scientists do this operation manually, which makes it hard and long in terms of time. Graphics Processing Units (GPUs) allow us to make the processing faster and more efficient, thanks to its multicore architecture. The aim of the present paper is to propose a new GPU based approach to automate the molecule detection operation using image-processing techniques with OpenCL parallel implementation. We propose two parallel solutions, which will be compared to each other. We apply the exploited approach to analyze ionic liquids and biomaterials samples.\",\"PeriodicalId\":6482,\"journal\":{\"name\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"volume\":\"218 1\",\"pages\":\"360-365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE2.2018.8391362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拉曼光谱法是一种技术,可以通过在图像光谱或数字系列数据中发现的一些代表性峰来检测化学产品。拉曼光谱机生成CSV文件或图像作为曲线,这是诊断产品的结果。对光谱峰的分析允许检测有关产品的化学来源。科学家们都是手工操作,这使得这项工作既困难又费时。图形处理单元(gpu)的多核架构使我们的处理速度更快,效率更高。本文的目的是提出一种新的基于GPU的方法,使用OpenCL并行实现的图像处理技术来自动化分子检测操作。我们提出两个并行的解决方案,并将它们相互比较。我们应用该方法分析离子液体和生物材料样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Based GPU approach to accelerate spectroscopy Raman spectrum processing
Raman spectrometry is a technique that allows detecting chemical products through a number of representative peaks found in an image spectrum or numeric series of data. The Raman spectrum machine generates a CSV file or an image as a curve which is the result of the diagnosis product. The analysis of the spectrum peaks permits to detect the chemical origin of the concerned product. Scientists do this operation manually, which makes it hard and long in terms of time. Graphics Processing Units (GPUs) allow us to make the processing faster and more efficient, thanks to its multicore architecture. The aim of the present paper is to propose a new GPU based approach to automate the molecule detection operation using image-processing techniques with OpenCL parallel implementation. We propose two parallel solutions, which will be compared to each other. We apply the exploited approach to analyze ionic liquids and biomaterials samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protection coordination assessment and improvement of electrical network of an industrial complex in connection to power grid: An experience report Grasshopper optimization algorithm for automatic voltage regulator system Parameter optimization of power system stabilizer via Salp Swarm algorithm Optimization of out-of-band impedance environment for linearity improvements of microwave power transistors Distribution network fault section identification and fault location using artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1