{"title":"基于近红外技术的完整烟叶定性鉴别","authors":"Mengyao Lu, Qiang Zhou, Tian’en Chen, Junhui Li, Shuwen Jiang, Qin Gao, Cong Wang, Dong Chen","doi":"10.1155/2021/8807199","DOIUrl":null,"url":null,"abstract":"To explore the application of near-infrared (NIR) technology to the quality analysis of raw intact tobacco leaves, a nondestructive discrimination method based on NIR spectroscopy is proposed. A “multiregion + multipoint” NIR spectrum acquisition method is developed, allowing 18 NIR diffuse reflectance spectra to be collected from an intact tobacco leaf. The spectral characteristics and spectral preprocessing methods of intact tobacco leaves are analyzed, and then different spectra (independent or average spectra) and different algorithms (discriminant partial least-squares (DPLS) and Fisher’s discriminant algorithms) are used to construct discriminant models for verifying the feasibility of intact leaf modeling and determining the optimal model conditions. Qualitative discrimination models based on the position, green-variegated (GV), and the grade of intact tobacco leaves are then constructed using the NIR spectra. In the application and verification stage, a multiclassification voting mechanism is used to fuse the results of multiple spectra from a single tobacco leaf to obtain the final discrimination result for that leaf. The results show that the position-GV discrimination model constructed using independent spectra and the DPLS algorithm and the grade discrimination model constructed using independent spectra and Fisher’s algorithm achieve optimal results with intact leaf NIR wavenumbers from 5006–8988 cm−1 and the first-derivative and standard normal variate transformation preprocessing method. Finally, when applied to new tobacco leaves, the position-GV model and the grade model achieve discrimination accuracies of 95.18% and 92.77%, respectively. This demonstrates that the two models have satisfactory qualitative discrimination ability for intact tobacco leaves. This study has established a feasible method for the nondestructive qualitative discrimination of the position, GV, and grade of intact tobacco leaves based on NIR technology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Qualitative Discrimination of Intact Tobacco Leaves Based on Near-Infrared Technology\",\"authors\":\"Mengyao Lu, Qiang Zhou, Tian’en Chen, Junhui Li, Shuwen Jiang, Qin Gao, Cong Wang, Dong Chen\",\"doi\":\"10.1155/2021/8807199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the application of near-infrared (NIR) technology to the quality analysis of raw intact tobacco leaves, a nondestructive discrimination method based on NIR spectroscopy is proposed. A “multiregion + multipoint” NIR spectrum acquisition method is developed, allowing 18 NIR diffuse reflectance spectra to be collected from an intact tobacco leaf. The spectral characteristics and spectral preprocessing methods of intact tobacco leaves are analyzed, and then different spectra (independent or average spectra) and different algorithms (discriminant partial least-squares (DPLS) and Fisher’s discriminant algorithms) are used to construct discriminant models for verifying the feasibility of intact leaf modeling and determining the optimal model conditions. Qualitative discrimination models based on the position, green-variegated (GV), and the grade of intact tobacco leaves are then constructed using the NIR spectra. In the application and verification stage, a multiclassification voting mechanism is used to fuse the results of multiple spectra from a single tobacco leaf to obtain the final discrimination result for that leaf. The results show that the position-GV discrimination model constructed using independent spectra and the DPLS algorithm and the grade discrimination model constructed using independent spectra and Fisher’s algorithm achieve optimal results with intact leaf NIR wavenumbers from 5006–8988 cm−1 and the first-derivative and standard normal variate transformation preprocessing method. Finally, when applied to new tobacco leaves, the position-GV model and the grade model achieve discrimination accuracies of 95.18% and 92.77%, respectively. This demonstrates that the two models have satisfactory qualitative discrimination ability for intact tobacco leaves. This study has established a feasible method for the nondestructive qualitative discrimination of the position, GV, and grade of intact tobacco leaves based on NIR technology.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/8807199\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/8807199","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Qualitative Discrimination of Intact Tobacco Leaves Based on Near-Infrared Technology
To explore the application of near-infrared (NIR) technology to the quality analysis of raw intact tobacco leaves, a nondestructive discrimination method based on NIR spectroscopy is proposed. A “multiregion + multipoint” NIR spectrum acquisition method is developed, allowing 18 NIR diffuse reflectance spectra to be collected from an intact tobacco leaf. The spectral characteristics and spectral preprocessing methods of intact tobacco leaves are analyzed, and then different spectra (independent or average spectra) and different algorithms (discriminant partial least-squares (DPLS) and Fisher’s discriminant algorithms) are used to construct discriminant models for verifying the feasibility of intact leaf modeling and determining the optimal model conditions. Qualitative discrimination models based on the position, green-variegated (GV), and the grade of intact tobacco leaves are then constructed using the NIR spectra. In the application and verification stage, a multiclassification voting mechanism is used to fuse the results of multiple spectra from a single tobacco leaf to obtain the final discrimination result for that leaf. The results show that the position-GV discrimination model constructed using independent spectra and the DPLS algorithm and the grade discrimination model constructed using independent spectra and Fisher’s algorithm achieve optimal results with intact leaf NIR wavenumbers from 5006–8988 cm−1 and the first-derivative and standard normal variate transformation preprocessing method. Finally, when applied to new tobacco leaves, the position-GV model and the grade model achieve discrimination accuracies of 95.18% and 92.77%, respectively. This demonstrates that the two models have satisfactory qualitative discrimination ability for intact tobacco leaves. This study has established a feasible method for the nondestructive qualitative discrimination of the position, GV, and grade of intact tobacco leaves based on NIR technology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.