采用不同模糊化方法对酵母数据集进行模糊聚类

P. Ashok, G. M. Kadhar, E. Elayaraja, V. Vadivel
{"title":"采用不同模糊化方法对酵母数据集进行模糊聚类","authors":"P. Ashok, G. M. Kadhar, E. Elayaraja, V. Vadivel","doi":"10.1109/ICCCNT.2013.6726574","DOIUrl":null,"url":null,"abstract":"Clustering is a process for classifying objects or patterns in such a way that samples of the same group are more similar to one another than samples belonging to different groups. In this paper, we introduce the clustering method called soft clustering and its type Fuzzy C-Means. The clustering algorithms are improved by implementing the two different membership functions. The Fuzzy C-Means algorithm can be improved by implementing the Fuzzification parameter values from 1.25 to 2.0 and compared with different datasets using Davis Bouldin Index. The Fuzzification parameter 2.0 is most suitable for Fuzzy C-Means clustering algorithm than other Fuzzification parameter. The Fuzzy C-Means and K-Means clustering algorithms are implemented and executed in Matlab and compared with Execution speed and Iteration Count Methods. The Fuzzy C-Means clustering method achieve better results and obtain minimum DB index for all the different cluster values from different datasets. The experimental results shows that the Fuzzy C-Means method performs well when compare with the K-Means clustering.","PeriodicalId":6330,"journal":{"name":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","volume":"117 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fuzzy based clustering method on yeast dataset with different fuzzification methods\",\"authors\":\"P. Ashok, G. M. Kadhar, E. Elayaraja, V. Vadivel\",\"doi\":\"10.1109/ICCCNT.2013.6726574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a process for classifying objects or patterns in such a way that samples of the same group are more similar to one another than samples belonging to different groups. In this paper, we introduce the clustering method called soft clustering and its type Fuzzy C-Means. The clustering algorithms are improved by implementing the two different membership functions. The Fuzzy C-Means algorithm can be improved by implementing the Fuzzification parameter values from 1.25 to 2.0 and compared with different datasets using Davis Bouldin Index. The Fuzzification parameter 2.0 is most suitable for Fuzzy C-Means clustering algorithm than other Fuzzification parameter. The Fuzzy C-Means and K-Means clustering algorithms are implemented and executed in Matlab and compared with Execution speed and Iteration Count Methods. The Fuzzy C-Means clustering method achieve better results and obtain minimum DB index for all the different cluster values from different datasets. The experimental results shows that the Fuzzy C-Means method performs well when compare with the K-Means clustering.\",\"PeriodicalId\":6330,\"journal\":{\"name\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"volume\":\"117 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2013.6726574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2013.6726574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

聚类是一种对对象或模式进行分类的过程,通过这种方式,同一组的样本比属于不同组的样本更相似。本文介绍了一种称为软聚类的聚类方法及其模糊c均值。通过实现两种不同的隶属函数,改进了聚类算法。通过将模糊化参数值从1.25提高到2.0,并使用Davis Bouldin Index与不同数据集进行比较,改进了模糊C-Means算法。与其他模糊化参数相比,模糊化参数2.0最适合于模糊c均值聚类算法。在Matlab中实现和执行了模糊C-Means和K-Means聚类算法,并与执行速度和迭代计数方法进行了比较。模糊C-Means聚类方法取得了较好的聚类效果,对于不同数据集的所有不同聚类值都获得了最小的DB索引。实验结果表明,与K-Means聚类方法相比,模糊C-Means聚类方法具有较好的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy based clustering method on yeast dataset with different fuzzification methods
Clustering is a process for classifying objects or patterns in such a way that samples of the same group are more similar to one another than samples belonging to different groups. In this paper, we introduce the clustering method called soft clustering and its type Fuzzy C-Means. The clustering algorithms are improved by implementing the two different membership functions. The Fuzzy C-Means algorithm can be improved by implementing the Fuzzification parameter values from 1.25 to 2.0 and compared with different datasets using Davis Bouldin Index. The Fuzzification parameter 2.0 is most suitable for Fuzzy C-Means clustering algorithm than other Fuzzification parameter. The Fuzzy C-Means and K-Means clustering algorithms are implemented and executed in Matlab and compared with Execution speed and Iteration Count Methods. The Fuzzy C-Means clustering method achieve better results and obtain minimum DB index for all the different cluster values from different datasets. The experimental results shows that the Fuzzy C-Means method performs well when compare with the K-Means clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Multi-tenant SaaS cloud” Reduced order linear functional observers for large scale linear discrete-time control systems Multi pattern matching technique on fragmented and out-of-order packet streams for intrusion detection system Detection and tracking of moving objects by fuzzy textures Evacuation map generation using maze routing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1