{"title":"无线网络中的准贪婪地理路由","authors":"J. Tsai, Yen-Cheng Li","doi":"10.1109/GLOCOM.2012.6503082","DOIUrl":null,"url":null,"abstract":"Greedy forwarding combined with planar graph routing exploits minimal local position information to achieve reliable packet delivery in wireless networks. However, it is at the expense of path hop counts and traffic loads converging on links dictated by a chosen planar graph traversal scheme to bypass network holes. To mitigate these negative factors for delay-sensitive traffic service, our forwarding scheme further utilizes a simple hypothesis test based on local information to partition the set of candidate neighborhood nodes for packet relay into two subsets. One is a preferable subset containing nodes more likely located in a dense area of nodes and less likely to be a local minimum for greedy forwarding while the other contains the rest. The preferable subset has priority over the other one in the process of greedy forwarding. Consequently, our geographic routing scheme even embodies the feature of quasi greedy for forwarding packets but does achieve the goal of reducing routing hop counts. It only requires an extra complexity at each node to compute a representative angle that characterizes the node and to interchange with neighborhood nodes the angle information in addition to the location information needed normally.","PeriodicalId":72021,"journal":{"name":"... IEEE Global Communications Conference. IEEE Global Communications Conference","volume":"5 1","pages":"8-13"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-greedy geographic routing in wireless networks\",\"authors\":\"J. Tsai, Yen-Cheng Li\",\"doi\":\"10.1109/GLOCOM.2012.6503082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Greedy forwarding combined with planar graph routing exploits minimal local position information to achieve reliable packet delivery in wireless networks. However, it is at the expense of path hop counts and traffic loads converging on links dictated by a chosen planar graph traversal scheme to bypass network holes. To mitigate these negative factors for delay-sensitive traffic service, our forwarding scheme further utilizes a simple hypothesis test based on local information to partition the set of candidate neighborhood nodes for packet relay into two subsets. One is a preferable subset containing nodes more likely located in a dense area of nodes and less likely to be a local minimum for greedy forwarding while the other contains the rest. The preferable subset has priority over the other one in the process of greedy forwarding. Consequently, our geographic routing scheme even embodies the feature of quasi greedy for forwarding packets but does achieve the goal of reducing routing hop counts. It only requires an extra complexity at each node to compute a representative angle that characterizes the node and to interchange with neighborhood nodes the angle information in addition to the location information needed normally.\",\"PeriodicalId\":72021,\"journal\":{\"name\":\"... IEEE Global Communications Conference. IEEE Global Communications Conference\",\"volume\":\"5 1\",\"pages\":\"8-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE Global Communications Conference. IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2012.6503082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Global Communications Conference. IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2012.6503082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quasi-greedy geographic routing in wireless networks
Greedy forwarding combined with planar graph routing exploits minimal local position information to achieve reliable packet delivery in wireless networks. However, it is at the expense of path hop counts and traffic loads converging on links dictated by a chosen planar graph traversal scheme to bypass network holes. To mitigate these negative factors for delay-sensitive traffic service, our forwarding scheme further utilizes a simple hypothesis test based on local information to partition the set of candidate neighborhood nodes for packet relay into two subsets. One is a preferable subset containing nodes more likely located in a dense area of nodes and less likely to be a local minimum for greedy forwarding while the other contains the rest. The preferable subset has priority over the other one in the process of greedy forwarding. Consequently, our geographic routing scheme even embodies the feature of quasi greedy for forwarding packets but does achieve the goal of reducing routing hop counts. It only requires an extra complexity at each node to compute a representative angle that characterizes the node and to interchange with neighborhood nodes the angle information in addition to the location information needed normally.