应用递归神经网络对GNSS时间序列进行去噪和预测

Time Pub Date : 2019-01-01 DOI:10.4230/LIPIcs.TIME.2019.10
E. L. Piccolomini, S. Gandolfi, L. Poluzzi, L. Tavasci, Pasquale Cascarano, A. Pascucci
{"title":"应用递归神经网络对GNSS时间序列进行去噪和预测","authors":"E. L. Piccolomini, S. Gandolfi, L. Poluzzi, L. Tavasci, Pasquale Cascarano, A. Pascucci","doi":"10.4230/LIPIcs.TIME.2019.10","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite Systems (GNSS) are systems that continuously acquire data and provide position time series. Many monitoring applications are based on GNSS data and their efficiency depends on the capability in the time series analysis to characterize the signal content and/or to predict incoming coordinates. In this work we propose a suitable Network Architecture, based on Long Short Term Memory Recurrent Neural Networks, to solve two main tasks in GNSS time series analysis: denoising and prediction. We carry out an analysis on a synthetic time series, then we inspect two real different case studies and evaluate the results. We develop a non-deep network that removes almost the 50% of scattering from real GNSS time series and achieves a coordinate prediction with 1.1 millimeters of Mean Squared Error. 2012 ACM Subject Classification General and reference → General conference proceedings; Mathematics of computing → Time series analysis; Computing methodologies → Supervised learning by regression; Information systems → Global positioning systems","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"10:1-10:12"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recurrent Neural Networks Applied to GNSS Time Series for Denoising and Prediction\",\"authors\":\"E. L. Piccolomini, S. Gandolfi, L. Poluzzi, L. Tavasci, Pasquale Cascarano, A. Pascucci\",\"doi\":\"10.4230/LIPIcs.TIME.2019.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Navigation Satellite Systems (GNSS) are systems that continuously acquire data and provide position time series. Many monitoring applications are based on GNSS data and their efficiency depends on the capability in the time series analysis to characterize the signal content and/or to predict incoming coordinates. In this work we propose a suitable Network Architecture, based on Long Short Term Memory Recurrent Neural Networks, to solve two main tasks in GNSS time series analysis: denoising and prediction. We carry out an analysis on a synthetic time series, then we inspect two real different case studies and evaluate the results. We develop a non-deep network that removes almost the 50% of scattering from real GNSS time series and achieves a coordinate prediction with 1.1 millimeters of Mean Squared Error. 2012 ACM Subject Classification General and reference → General conference proceedings; Mathematics of computing → Time series analysis; Computing methodologies → Supervised learning by regression; Information systems → Global positioning systems\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"1 1\",\"pages\":\"10:1-10:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2019.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2019.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

全球卫星导航系统(GNSS)是一种连续获取数据并提供位置时间序列的系统。许多监测应用基于GNSS数据,其效率取决于时间序列分析的能力,以表征信号内容和/或预测传入坐标。在这项工作中,我们提出了一个合适的网络架构,基于长短期记忆递归神经网络,以解决GNSS时间序列分析中的两个主要任务:去噪和预测。我们对一个合成时间序列进行分析,然后考察两个真正不同的案例研究并评估结果。我们开发了一个非深度网络,该网络从真实GNSS时间序列中去除了近50%的散射,并实现了均方误差为1.1毫米的坐标预测。计算数学→时间序列分析;计算方法→回归监督学习;信息系统→全球定位系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recurrent Neural Networks Applied to GNSS Time Series for Denoising and Prediction
Global Navigation Satellite Systems (GNSS) are systems that continuously acquire data and provide position time series. Many monitoring applications are based on GNSS data and their efficiency depends on the capability in the time series analysis to characterize the signal content and/or to predict incoming coordinates. In this work we propose a suitable Network Architecture, based on Long Short Term Memory Recurrent Neural Networks, to solve two main tasks in GNSS time series analysis: denoising and prediction. We carry out an analysis on a synthetic time series, then we inspect two real different case studies and evaluate the results. We develop a non-deep network that removes almost the 50% of scattering from real GNSS time series and achieves a coordinate prediction with 1.1 millimeters of Mean Squared Error. 2012 ACM Subject Classification General and reference → General conference proceedings; Mathematics of computing → Time series analysis; Computing methodologies → Supervised learning by regression; Information systems → Global positioning systems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early Detection of Temporal Constraint Violations LSCPM: communities in massive real-world Link Streams by Clique Percolation Method Taming Strategy Logic: Non-Recurrent Fragments Realizability Problem for Constraint LTL Logical Forms of Chronicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1