不同FIS预测系统的最优ANFIS模型

D. Adyanti, Dian Candra Rini Novitasar, Ahmad Hanif Asyhar, F. Setiawan
{"title":"不同FIS预测系统的最优ANFIS模型","authors":"D. Adyanti, Dian Candra Rini Novitasar, Ahmad Hanif Asyhar, F. Setiawan","doi":"10.11591/eecsi.v5.1617","DOIUrl":null,"url":null,"abstract":"Adaptive Network Based Fuzzy Inference System (ANFIS) using time series analize is one of intelligent systems that can be used to predict with good accuracy in all fields like in meteorology. However, some research about forecasting has less emphasis on the structure of the FIS ANFIS. Thus, in this paper, the optimization of the ANFIS model for predicting maritime weather is carried out by analyzing the appropriate initialization determinations of the three fuzzy Inference structures ANFIS which includes FIS structure 1 (grid partition), FIS structure 2 (subtractive clustering) and FIS structure 3 (fuzzy c-means clustering). In this paper, the variable input used are two hours (t-2) and one hour (t-1) before, and data at that time (t), and the output of this system is the prediction of next hour, six hours, twelve hours and next day of variable ocean currents velocity (cm/s) and wave height (m) using the three FIS ANFIS approaches. Based on the smallest goal error (RMSE and MSE) of the three FIS ANFIS approaches used to predict the ocean currents speed (velocity) and wave height, the model is best generated by subtractive clustering. It can be seen that subtractive clustering produces the smallest RMSE and MSE error values of other FIS structure.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal ANFIS Model for Forecasting System Using Different FIS\",\"authors\":\"D. Adyanti, Dian Candra Rini Novitasar, Ahmad Hanif Asyhar, F. Setiawan\",\"doi\":\"10.11591/eecsi.v5.1617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Network Based Fuzzy Inference System (ANFIS) using time series analize is one of intelligent systems that can be used to predict with good accuracy in all fields like in meteorology. However, some research about forecasting has less emphasis on the structure of the FIS ANFIS. Thus, in this paper, the optimization of the ANFIS model for predicting maritime weather is carried out by analyzing the appropriate initialization determinations of the three fuzzy Inference structures ANFIS which includes FIS structure 1 (grid partition), FIS structure 2 (subtractive clustering) and FIS structure 3 (fuzzy c-means clustering). In this paper, the variable input used are two hours (t-2) and one hour (t-1) before, and data at that time (t), and the output of this system is the prediction of next hour, six hours, twelve hours and next day of variable ocean currents velocity (cm/s) and wave height (m) using the three FIS ANFIS approaches. Based on the smallest goal error (RMSE and MSE) of the three FIS ANFIS approaches used to predict the ocean currents speed (velocity) and wave height, the model is best generated by subtractive clustering. It can be seen that subtractive clustering produces the smallest RMSE and MSE error values of other FIS structure.\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eecsi.v5.1617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v5.1617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于自适应网络的模糊推理系统(ANFIS)是一种基于时间序列分析的智能预测系统,可用于气象学等各个领域的高精度预测。然而,一些关于预测的研究较少关注FIS的结构。因此,本文通过分析FIS结构1(网格划分)、FIS结构2(减法聚类)和FIS结构3(模糊c均值聚类)三种模糊推理结构ANFIS的适当初始化确定,对用于海上天气预测的ANFIS模型进行优化。本文使用的变量输入为前2小时(t-2)和1小时(t-1),以及当时的数据(t),系统的输出是使用三种FIS ANFIS方法对下一小时、6小时、12小时和第二天的变海流速度(cm/s)和波高(m)的预测。基于三种预测海流速度(速度)和波高的FIS ANFIS方法的最小目标误差(RMSE和MSE),采用减法聚类生成模型效果最好。可以看出,相减聚类产生的RMSE和MSE误差值是其他FIS结构中最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal ANFIS Model for Forecasting System Using Different FIS
Adaptive Network Based Fuzzy Inference System (ANFIS) using time series analize is one of intelligent systems that can be used to predict with good accuracy in all fields like in meteorology. However, some research about forecasting has less emphasis on the structure of the FIS ANFIS. Thus, in this paper, the optimization of the ANFIS model for predicting maritime weather is carried out by analyzing the appropriate initialization determinations of the three fuzzy Inference structures ANFIS which includes FIS structure 1 (grid partition), FIS structure 2 (subtractive clustering) and FIS structure 3 (fuzzy c-means clustering). In this paper, the variable input used are two hours (t-2) and one hour (t-1) before, and data at that time (t), and the output of this system is the prediction of next hour, six hours, twelve hours and next day of variable ocean currents velocity (cm/s) and wave height (m) using the three FIS ANFIS approaches. Based on the smallest goal error (RMSE and MSE) of the three FIS ANFIS approaches used to predict the ocean currents speed (velocity) and wave height, the model is best generated by subtractive clustering. It can be seen that subtractive clustering produces the smallest RMSE and MSE error values of other FIS structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimated Profits of Rengginang Lorjuk Madura by Used Comparison of Holt-Winter and Moving Average Water Contents and Monoglycerides as Development Role of Biodiesel Standard in Indonesia for B30 Implementation Image Restoration Effect on DCT High Frequency Removal and Wiener Algorithm for Detecting Facial Key Points RAIKU: E-Commerce App Using Laravel Probabilistic Programming with Piecewise Objective Function for Solving Supplier Selection Problem with Price Discount and Probabilistic Demand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1