基于微力学模型的炭黑增强聚酯基复合材料弹性响应:界面相的作用

M. Karevan
{"title":"基于微力学模型的炭黑增强聚酯基复合材料弹性响应:界面相的作用","authors":"M. Karevan","doi":"10.1177/23977914211070116","DOIUrl":null,"url":null,"abstract":"Carbon-based reinforcements have been widely reported in improving mechanical properties of polymers. However, still few studies exist on the incorporation of the interphase as a result of the interfacial interactions into analytical prediction tools. To better understand the effect of interfacial interphase, this study compares and correlates the experimental mechanical response of polyester based composites filled with carbon black (CB) with the elastic behavior obtained from the micromechanical models. Mold cast composites of polyester reinforced with 0 wt%–10 wt% of CB were fabricated. To determine the length of cooperative rearranging region (CRR) as a measure of the interphase, thermal studies focusing on the variations in the specific heat capacity or the relaxation strength of the composites around the glass transition temperature (Tg) range were performed using a thermodynamical model. Micromechanical models such as the Halpin-Tsai and Tandon-Weng were used to determine the Young’s modulus with respect to the CB wt% and diameter as well as the interphase thickness and modulus. The results exhibited the sensitivity of the models to the existence of the interphase as a secondary mechanism, which was correlated to the cross-link density and interfacial bonding. The impact results showed the decrease in the impact resistance upon the addition of higher filler loadings ascribed to the destroyed bonding at the interface and CBs agglomeration confirmed by morphological studies. The research results can be further utilized in the explanation of the changes in the elastic response of carbon-based reinforced thermosetting composites emphasizing the key role of interphase.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"14 1","pages":"87 - 100"},"PeriodicalIF":4.2000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic response of Carbon Black reinforced polyester based composites using micromechanical models: Role of interphase\",\"authors\":\"M. Karevan\",\"doi\":\"10.1177/23977914211070116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon-based reinforcements have been widely reported in improving mechanical properties of polymers. However, still few studies exist on the incorporation of the interphase as a result of the interfacial interactions into analytical prediction tools. To better understand the effect of interfacial interphase, this study compares and correlates the experimental mechanical response of polyester based composites filled with carbon black (CB) with the elastic behavior obtained from the micromechanical models. Mold cast composites of polyester reinforced with 0 wt%–10 wt% of CB were fabricated. To determine the length of cooperative rearranging region (CRR) as a measure of the interphase, thermal studies focusing on the variations in the specific heat capacity or the relaxation strength of the composites around the glass transition temperature (Tg) range were performed using a thermodynamical model. Micromechanical models such as the Halpin-Tsai and Tandon-Weng were used to determine the Young’s modulus with respect to the CB wt% and diameter as well as the interphase thickness and modulus. The results exhibited the sensitivity of the models to the existence of the interphase as a secondary mechanism, which was correlated to the cross-link density and interfacial bonding. The impact results showed the decrease in the impact resistance upon the addition of higher filler loadings ascribed to the destroyed bonding at the interface and CBs agglomeration confirmed by morphological studies. The research results can be further utilized in the explanation of the changes in the elastic response of carbon-based reinforced thermosetting composites emphasizing the key role of interphase.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"14 1\",\"pages\":\"87 - 100\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914211070116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914211070116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碳基增强材料在改善聚合物力学性能方面得到了广泛的报道。然而,将界面相互作用导致的界面相纳入分析预测工具的研究仍然很少。为了更好地理解界面相的影响,本研究将炭黑填充聚酯基复合材料的实验力学响应与微观力学模型得到的弹性行为进行了比较和关联。制备了含0 wt% ~ 10 wt% CB的聚酯增强模铸复合材料。为了确定协同重排区(CRR)的长度作为间相的度量,使用热力学模型对复合材料在玻璃化转变温度(Tg)范围内比热容或弛豫强度的变化进行了热研究。采用Halpin-Tsai和Tandon-Weng等微力学模型确定了相对于CB wt%和直径的杨氏模量以及相间厚度和模量。结果表明,该模型对界面相作为次级机制的存在具有敏感性,这与交联密度和界面键合有关。冲击结果表明,添加较高的填料时,由于界面键结破坏和形态研究证实的CBs团聚,抗冲击性降低。研究结果可以进一步用于解释碳基增强热固性复合材料弹性响应的变化,强调界面相的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic response of Carbon Black reinforced polyester based composites using micromechanical models: Role of interphase
Carbon-based reinforcements have been widely reported in improving mechanical properties of polymers. However, still few studies exist on the incorporation of the interphase as a result of the interfacial interactions into analytical prediction tools. To better understand the effect of interfacial interphase, this study compares and correlates the experimental mechanical response of polyester based composites filled with carbon black (CB) with the elastic behavior obtained from the micromechanical models. Mold cast composites of polyester reinforced with 0 wt%–10 wt% of CB were fabricated. To determine the length of cooperative rearranging region (CRR) as a measure of the interphase, thermal studies focusing on the variations in the specific heat capacity or the relaxation strength of the composites around the glass transition temperature (Tg) range were performed using a thermodynamical model. Micromechanical models such as the Halpin-Tsai and Tandon-Weng were used to determine the Young’s modulus with respect to the CB wt% and diameter as well as the interphase thickness and modulus. The results exhibited the sensitivity of the models to the existence of the interphase as a secondary mechanism, which was correlated to the cross-link density and interfacial bonding. The impact results showed the decrease in the impact resistance upon the addition of higher filler loadings ascribed to the destroyed bonding at the interface and CBs agglomeration confirmed by morphological studies. The research results can be further utilized in the explanation of the changes in the elastic response of carbon-based reinforced thermosetting composites emphasizing the key role of interphase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1