基于反向传播神经网络的增材制造Al-Cu合金参数预测

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Technology Pub Date : 2023-08-23 DOI:10.1080/02670836.2023.2246772
F. Lyu, Leilei Wang, Jiahao Zhang, Mingzhen Du, Zhiwei Dou, Chuanyun Gao, X. Zhan
{"title":"基于反向传播神经网络的增材制造Al-Cu合金参数预测","authors":"F. Lyu, Leilei Wang, Jiahao Zhang, Mingzhen Du, Zhiwei Dou, Chuanyun Gao, X. Zhan","doi":"10.1080/02670836.2023.2246772","DOIUrl":null,"url":null,"abstract":"The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters prediction in additively manufactured Al-Cu alloy using back propagation neural network\",\"authors\":\"F. Lyu, Leilei Wang, Jiahao Zhang, Mingzhen Du, Zhiwei Dou, Chuanyun Gao, X. Zhan\",\"doi\":\"10.1080/02670836.2023.2246772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2246772\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2246772","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameters prediction in additively manufactured Al-Cu alloy using back propagation neural network
The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
期刊最新文献
Statement of Retraction: Creep and mechanical properties of aluminium A356 composites reinforced with coated and un-coated MWCNTs fabricated using the stir casting method Low-cycle fatigue mashing behaviours of HTRB630 high-strength steel exposed to high temperatures Polymer nanocomposite films of Sr-doped BiVO4 for photodegradation of malachite green Constructing superior rate-performance manganese-based anode for lithium-ion batteries by tuning interface effect Evolution mechanism of the low-carbon MgO-based alkali-activated system under different heat-treatment conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1