{"title":"酶法/酸催化大豆油制备生物柴油的混合工艺研究","authors":"Wei-Jia Ting , Chun-Ming Huang , Nair Giridhar , Wen-Teng Wu","doi":"10.1016/j.jcice.2008.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using soybean oil as feedstock. In the enzymatic hydrolysis, 88% of the oil taken initially was hydrolyzed by binary immobilized lipase after 5<!--> <!-->h under optimal conditions. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production and the effects of temperature, catalyst concentration, feedstock to methanol molar ratio, and reaction time on biodiesel conversion were investigated. By using a feedstock to methanol molar ratio of 1:15 and a sulfuric acid concentration of 2.5%, a biodiesel conversion of 99% was obtained after 12<!--> <!-->h of reaction at 50<!--> <!-->°C. The biodiesel produced by this process met the American Society for Testing and Materials (ASTM) standard. This hybrid process may open a way for biodiesel production using unrefined and used oil as feedstock.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 3","pages":"Pages 203-210"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2008.01.004","citationCount":"60","resultStr":"{\"title\":\"An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil\",\"authors\":\"Wei-Jia Ting , Chun-Ming Huang , Nair Giridhar , Wen-Teng Wu\",\"doi\":\"10.1016/j.jcice.2008.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using soybean oil as feedstock. In the enzymatic hydrolysis, 88% of the oil taken initially was hydrolyzed by binary immobilized lipase after 5<!--> <!-->h under optimal conditions. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production and the effects of temperature, catalyst concentration, feedstock to methanol molar ratio, and reaction time on biodiesel conversion were investigated. By using a feedstock to methanol molar ratio of 1:15 and a sulfuric acid concentration of 2.5%, a biodiesel conversion of 99% was obtained after 12<!--> <!-->h of reaction at 50<!--> <!-->°C. The biodiesel produced by this process met the American Society for Testing and Materials (ASTM) standard. This hybrid process may open a way for biodiesel production using unrefined and used oil as feedstock.</p></div>\",\"PeriodicalId\":17285,\"journal\":{\"name\":\"Journal of The Chinese Institute of Chemical Engineers\",\"volume\":\"39 3\",\"pages\":\"Pages 203-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcice.2008.01.004\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Institute of Chemical Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S036816530800021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036816530800021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil
The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using soybean oil as feedstock. In the enzymatic hydrolysis, 88% of the oil taken initially was hydrolyzed by binary immobilized lipase after 5 h under optimal conditions. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production and the effects of temperature, catalyst concentration, feedstock to methanol molar ratio, and reaction time on biodiesel conversion were investigated. By using a feedstock to methanol molar ratio of 1:15 and a sulfuric acid concentration of 2.5%, a biodiesel conversion of 99% was obtained after 12 h of reaction at 50 °C. The biodiesel produced by this process met the American Society for Testing and Materials (ASTM) standard. This hybrid process may open a way for biodiesel production using unrefined and used oil as feedstock.