开发一个分析社会网络以识别人类行为的框架

Khandakar Tareq Alam, S. M. E. Hossain, M. Arefin
{"title":"开发一个分析社会网络以识别人类行为的框架","authors":"Khandakar Tareq Alam, S. M. E. Hossain, M. Arefin","doi":"10.1109/ICECTE.2016.7879589","DOIUrl":null,"url":null,"abstract":"Nowadays, online social networks become an important part in people's everyday life. Most of the people share their feelings, views, likings and disliking using social networks. By analysing social networks' data properly, it is possible to identify the behavioural patterns of the users. Considering this fact, in this paper we present a framework to analyse social networks' data to identify human behaviours. We have developed a framework for the collection and analysis of large data by crawling public data obtained from the users of online social networks. The system can analyze data posted by the users in two different languages. Experimental results show that social network is a good resource for estimating attitudes of the people.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Developing a framework for analyzing social networks to identify human behaviours\",\"authors\":\"Khandakar Tareq Alam, S. M. E. Hossain, M. Arefin\",\"doi\":\"10.1109/ICECTE.2016.7879589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, online social networks become an important part in people's everyday life. Most of the people share their feelings, views, likings and disliking using social networks. By analysing social networks' data properly, it is possible to identify the behavioural patterns of the users. Considering this fact, in this paper we present a framework to analyse social networks' data to identify human behaviours. We have developed a framework for the collection and analysis of large data by crawling public data obtained from the users of online social networks. The system can analyze data posted by the users in two different languages. Experimental results show that social network is a good resource for estimating attitudes of the people.\",\"PeriodicalId\":6578,\"journal\":{\"name\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"volume\":\"22 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTE.2016.7879589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,在线社交网络已成为人们日常生活的重要组成部分。大多数人在社交网络上分享他们的感受、观点、喜欢和不喜欢。通过适当地分析社交网络的数据,有可能确定用户的行为模式。考虑到这一事实,在本文中,我们提出了一个框架来分析社交网络的数据,以识别人类行为。我们开发了一个框架,通过从在线社交网络用户那里获取公共数据来收集和分析大数据。该系统可以分析用户用两种不同语言发布的数据。实验结果表明,社会网络是估计人们态度的良好资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a framework for analyzing social networks to identify human behaviours
Nowadays, online social networks become an important part in people's everyday life. Most of the people share their feelings, views, likings and disliking using social networks. By analysing social networks' data properly, it is possible to identify the behavioural patterns of the users. Considering this fact, in this paper we present a framework to analyse social networks' data to identify human behaviours. We have developed a framework for the collection and analysis of large data by crawling public data obtained from the users of online social networks. The system can analyze data posted by the users in two different languages. Experimental results show that social network is a good resource for estimating attitudes of the people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An investigation of SAR inside human heart for antenna directivity, surface current variations and effect on antenna frequency in presence of heart Smoothening of wind farm output fluctuations using new pitch controller Low effective material loss microstructure fiber for THz wave guidance A new machine learning approach to select adaptive IMFs of EMD Comparison of two types of graphene coated fiber optic SPR biosensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1