监测多晶光伏组件中潜在诱导降解的自然恢复

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS Journal of Energy in Southern Africa Pub Date : 2022-03-17 DOI:10.17159/2413-3051/2022/v33i1a8611
I. M. Kwembur, J.L. Crozier McCleland, E. Van Dyk, F. Vorster
{"title":"监测多晶光伏组件中潜在诱导降解的自然恢复","authors":"I. M. Kwembur, J.L. Crozier McCleland, E. Van Dyk, F. Vorster","doi":"10.17159/2413-3051/2022/v33i1a8611","DOIUrl":null,"url":null,"abstract":"Potential induced degradation (PID) is a defect that has a severe effect on the performance of photovoltaic (PV) modules in field conditions. It is caused by leakage currents and the accumulation of sodium ions (Na+) between the anti-reflective coating and the encapsulation. In the experiment reported on here, PID was artificially induced through a PID stress test, where the surface of a poly-crystalline p‑type module was covered with an aluminium sheet connected to the positive terminal of a high voltage power supply (1000 V), while the short-circuited module terminals was biased to the negative terminal. This stress test was applied to two similar poly-crystalline p‑type modules, A and B, for 48 hours and 20 hours respectively. The duration of the stress test determines the degree of PID severity induced. The length of the test resulted in Module A’s power decreasing by 88% and Module B’s by 40%. Electroluminescence and current-voltage measurements were taken at regular intervals over a period of more than a year to monitor the natural recovery of the modules. These measurements show that the natural recovery of severe PID modules is possible, but slow. After the test period, the maximum power of Module A and Module B had recovered to 63% and 96% of the original level. PID experienced in the field is generally less severe than for the modules in this study, so PID recovery could be achieved by adopting a process of setting affected strings at open-circuit in turns.","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the natural recovery of potential induced degradation in poly-crystalline photovoltaic modules\",\"authors\":\"I. M. Kwembur, J.L. Crozier McCleland, E. Van Dyk, F. Vorster\",\"doi\":\"10.17159/2413-3051/2022/v33i1a8611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential induced degradation (PID) is a defect that has a severe effect on the performance of photovoltaic (PV) modules in field conditions. It is caused by leakage currents and the accumulation of sodium ions (Na+) between the anti-reflective coating and the encapsulation. In the experiment reported on here, PID was artificially induced through a PID stress test, where the surface of a poly-crystalline p‑type module was covered with an aluminium sheet connected to the positive terminal of a high voltage power supply (1000 V), while the short-circuited module terminals was biased to the negative terminal. This stress test was applied to two similar poly-crystalline p‑type modules, A and B, for 48 hours and 20 hours respectively. The duration of the stress test determines the degree of PID severity induced. The length of the test resulted in Module A’s power decreasing by 88% and Module B’s by 40%. Electroluminescence and current-voltage measurements were taken at regular intervals over a period of more than a year to monitor the natural recovery of the modules. These measurements show that the natural recovery of severe PID modules is possible, but slow. After the test period, the maximum power of Module A and Module B had recovered to 63% and 96% of the original level. PID experienced in the field is generally less severe than for the modules in this study, so PID recovery could be achieved by adopting a process of setting affected strings at open-circuit in turns.\",\"PeriodicalId\":15666,\"journal\":{\"name\":\"Journal of Energy in Southern Africa\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy in Southern Africa\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17159/2413-3051/2022/v33i1a8611\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2022/v33i1a8611","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

电势诱导退化(PID)是一种严重影响光伏组件在野外环境下性能的缺陷。它是由泄漏电流和钠离子(Na+)在抗反射涂层和封装之间的积累引起的。在这里报告的实验中,通过PID应力测试人工诱导PID,在多晶p型模块表面覆盖铝片,铝片连接到高压电源(1000 V)的正极,而短路的模块端子偏置到负极。该应力测试应用于两个相似的多晶p型组件A和B,分别为48小时和20小时。压力测试的持续时间决定了引发的PID严重程度。测试的长度导致模块A的功率下降了88%,模块B的功率下降了40%。在一年多的时间里,定期进行电致发光和电流电压测量,以监测模块的自然恢复情况。这些测量表明,严重PID模块的自然恢复是可能的,但缓慢。经过测试期后,模块A和模块B的最大功率分别恢复到原来的63%和96%。与本研究的模块相比,现场经历的PID通常没有那么严重,因此可以采用开路轮流整定受影响串的过程来实现PID恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the natural recovery of potential induced degradation in poly-crystalline photovoltaic modules
Potential induced degradation (PID) is a defect that has a severe effect on the performance of photovoltaic (PV) modules in field conditions. It is caused by leakage currents and the accumulation of sodium ions (Na+) between the anti-reflective coating and the encapsulation. In the experiment reported on here, PID was artificially induced through a PID stress test, where the surface of a poly-crystalline p‑type module was covered with an aluminium sheet connected to the positive terminal of a high voltage power supply (1000 V), while the short-circuited module terminals was biased to the negative terminal. This stress test was applied to two similar poly-crystalline p‑type modules, A and B, for 48 hours and 20 hours respectively. The duration of the stress test determines the degree of PID severity induced. The length of the test resulted in Module A’s power decreasing by 88% and Module B’s by 40%. Electroluminescence and current-voltage measurements were taken at regular intervals over a period of more than a year to monitor the natural recovery of the modules. These measurements show that the natural recovery of severe PID modules is possible, but slow. After the test period, the maximum power of Module A and Module B had recovered to 63% and 96% of the original level. PID experienced in the field is generally less severe than for the modules in this study, so PID recovery could be achieved by adopting a process of setting affected strings at open-circuit in turns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
16
审稿时长
6 months
期刊介绍: The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe. Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.
期刊最新文献
Modelling NO2 emissions from Eskom’s coal fired power stations using Generalised Linear Models Trend analysis and inter-annual variability in wind speed in South Africa Commercialization of green hydrogen production from kraal manure in the Eastern Cape, South Africa: A review Investigation of Wind Data Resolution for Small Wind Turbine Performance Study Socio-economic analysis of solar photovoltaic-based mini-grids in rural communities: A Ugandan case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1